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rigorously, what does that mean?

We have all heard that quantum theory is weird 
and can’t be explained “classically”.
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Entanglement?

Quantum interference?

No-cloning?

Teleportation?

Wave-particle duality?

Remote steering?

Coherent superposition?

Uncertainty relations?

Nonlocality?

etc…

Contextuality



Classically explainable!
-noncommutativity 
-complementarity 
-interference 
-no-cloning 
-teleportation
-entanglement
-dense coding
-remote steering
-quantum eraser
-mmts must disturb
-ambiguity of mixtures
-no perfect state discr.
…
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e.g., by Spekkens toy theory



We need a principled way of dividing phenomena into 
those which can be “explained classically”, and 

those which are rigorous proofs of nonclassicality.
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Why study (non)classicality?

quantum gravity?
quantum causal modeling?
quantum machine learning?
quantum thermodynamics?

Influencing how we interpret 
and extend quantum theory

Intrinsic interest

Resources for quantum 
information processing



A framework for theories
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collection of systems
collection of processes

Generalized Probabilistic Theories

state

transformation

measurement 
effect

composition rule

⇒ observable probabilities

=    prob(effect|transformed state)



Can generate arbitrary 
circuits/experiments by 
composition:



=

Quantum theory as a GPT

Density operator

POVM element

CPTP maps

Linear operators 
on Hilbert space



The classical theory as a GPT

=

’

probability 
distribution

stochastic 
map

response 
function

Sets 
(random variables)



qubit

Boxworld 
(3d)

Spekkens 
toy theory

random 
GPT

Different theories are defined by their:

1. Convex geometry 2. Compositional structure

-multipartite states
-multipartite effects
-T1(T2)=T3
-etc
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GPT fragmentGPT

all possible systems, 
processes, and circuits

subset of systems, 
processes, and circuits

to describe an experimentto describe a possible way 
the world could have been
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Which theories/fragments can be 
explained by the classical GPT?



1) preserves the predictions
2) is linear
3) is diagram-preserving

which:

GPT 
transformation

(sub)stochastic 
map
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Answer: theories/fragments that “fit inside” the 
classical GPT (in a structure-preserving way)

𝛤 : GPT →  Classical GPT

The probabilities assigned to any complete circuit 
must be the same after applying 𝜞 as before



Linearity Diagram-preservation

preservation of 
compositional structure

preservation of
convex geometry

’



Linearity Diagram-preservation

preservation of 
compositional structure

preservation of
convex geometry

’



GPT processes
GPT systems random variables

(sub)stochastic processes

linear
map

This is the notion of “classical-explainability” for a GPT.
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(next time, add figure for that?)

…or for a GPT fragment! So it applies to experiments as well



Equivalent to the notion of 
“Generalized Contextuality”
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For more details, go to Youtube:
Noncontextuality, by David Schmid | Solstice of Foundations 2022



indistinguishability (even in principle!)

sameness in the (classical) explanation

Linearity

Leibniz’s principle in action
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Noncontextuality generalizes this 
to arbitrary linear functions over 
arbitrary classical variables

linear map from quantum 
processes to real-valued vectors

Example: Wigner function (when it is positive)



Understanding this geometrically 
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Prepare-measure circuit

states

measurement effects



state space: simplex effect space: dual of simplex

The classical GPT

d=3
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(1,0,0)

(0,1,0)

(0,0,1)(0,0,0)
d=3

(1,1,1)

(0,0,1)

(1,0,0)
(0,1,0)

(0,1,1)

(1,1,0)

(1,0,1)

(0,0,0)

state space: simplex effect space: dual of simplex
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The classical GPT



(1,0,0)

(0,1,0)

(0,0,1)d=3 (1/2,1/2,0)

(1/3,1/3,1/3)

(1,1,1)

(0,0,1)

(1,0,0)
(0,1,0)

(0,1,1)

(1,1,0)

(1,0,1)

(0,0,0)

normalized states effects

Classical statistical theory: probability distributions over a set of classical states
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(1,0,0)

(0,1,0)

(0,0,1)d=3 (1/2,1/2,0)

(1/3,1/3,1/3)

(1,1,1)

(0,0,1)

(1,0,0)
(0,1,0)

(0,1,1)

(1,1,0)

(1,0,1)

(0,0,0)

normalized states effects

Every mixed state decomposes into pure states in a unique way
⇒ One can always imagine that there is a true state of the system, and any 
mixed state can be uniquely interpreted as uncertainty about the true state.
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d=3

All logically possible measurements are physically possible and compatible.
⇒ One can determine the exact state of the system in a single measurement.

(1,0,0)

(0,1,0)

(0,0,1)
(1/2,1/2,0)

(1/3,1/3,1/3)

(1,1,1)

(0,0,1)

(1,0,0)
(0,1,0)

(0,1,1)

(1,1,0)

(1,0,1)

(0,0,0)

normalized states effects
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mmtsstates

note that every simplicial system fits inside quantum theory

d = 2

(Hilbert space dimension 3+ required)

d = 3



simplicial = strictly classical
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Intuitively: any theory/fragment that “fits inside” 
the simplicial GPT is classically explainable

Not in the 
theory/experiment
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Prepare-measure circuit

Linear
D-P



Prepare-measure circuit

Linear

Linear

Diagram-preservationS



Formal definition

A prepare-measure GPT (fragment) is 
classically explainable iff there exists 

1) a linear map taking states into a 
simplex, and
2) a linear map taking effects into 
the dual to that simplex, such that
3) probabilities are preserved
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this is just the definition of classical explainability specified to a prepare -measure scenario

diagram-preservation:

Linear Linear

“simplex embedding”



-may need to jointly rescale 
states and effects

? ?

Which GPTs/fragments are simplex-embeddable?
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? ?

-may need to jointly rescale 
states and effects

36

Which GPTs/fragments are simplex-embeddable?



? ?

-may need to jointly reorient 
states and effects
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Which GPTs/fragments are simplex-embeddable?



? ?

-may need to jointly reorient 
states and effects

Deciding if a GPT is 
simplex-embeddable is 
just a linear program!
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-dimension of simplex may be greater 
than GPT dimension! 

(in fact any linear transformation can be 
applied to the states if the inverse is 
applied to the effects)

Which GPTs/fragments are simplex-embeddable?
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It is clear geometrically that every GPT/fragment becomes 
classically explainable under sufficient depolarizing noise.
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It is clear geometrically that every GPT/fragment becomes 
classically explainable under sufficient depolarizing noise.



A measure of nonclassicality of a GPT: 
how much depolarization can it undergo 
before it becomes classically explainable?
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It is clear geometrically that every GPT/fragment becomes 
classically explainable under sufficient depolarizing noise.



Example: Spekkens toy theory
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Consider a simplicial GPT with d = 4
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Consider the midpoints of the 6 edges



This is the state space
of Spekkens toy theory!

(the effect space is constructed similarly)
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Take the convex hull



46
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|0

|1

|-i |+i

|+

|-
½I

Spekkens toy theory: imagine that these are 
the state of maximal knowledge in the theory
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This theory exhibits:
-noncommutativity 
-complementarity 
-interference 
-no-cloning 
-teleportation
-dense coding
-entanglement
-remote steering
-quantum eraser
-mmts must disturb
-ambiguity of mixtures
-no perfect state discr.
…



NOT in the 
GPT

Any simplex-embeddable GPT/fragment can be viewed similarly:

ruled out by an “epistemic restriction”
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-one can always imagine that the vertices correspond to ontic states
-every GPT process is a stochastic process on the ontic states
-but you cannot perfectly prepare/measure/know the ontic state

Any simplex embedding gives an ontological model of the GPT.



Simplicial GPT Simplex-embeddable GPTs

simplex + dual simplex + dual + restriction

-all mmts compatible
-unique decomposition of 
mixed states

-noncommutativity 
-complementarity 
-interference 
-no-cloning 
-teleportation
-dense coding
-entanglement
-remote steering
-quantum eraser
-mmts must disturb
-ambiguity of mixtures
-no perfect state discr.
…

Non-embeddable GPTs

-contextuality
-computational 
speedups
-nonlocality

all other GPTs

no contextualityno contextuality contextuality

strictly classical classically-explainable nonclassical

other more 
nuanced 
phenomena
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Examples of nonclassical phenomena
and what we can learn from them
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Quantum state discrimination

nonorthogonal states

In quantum theory there is no perfect single-
shot discrimination of non-orthogonal states.

Many have claimed this is 
evidence of nonclassicality.

But actually, it is easier to discriminate overlapping states in 
quantum theory than in any classically-explainable theory!

x1 x2
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state overlap

discrimination 
success

nonorthogonal states

Quantum state discrimination
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nonorthogonal states

The usual argument is 
based on a bad analogy:

x1 x2

Quantum state discrimination

x1 x2
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Cloning

Naïve take: no-cloning theorem = nonclassical

But, in both classical and quantum theories, a known 
state can always be cloned, and an unknown state 
cannot.

Unknown states are easier to clone in quantum theory 
than in any classical theory!
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Cloning 
fidelity

State overlap

Cloning
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Path 
distinguishability

Fringe visibility

Interference
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Uncertainty relations

X predictability

Z predictability
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The thin film of quantumness

Classically 
Explainable



Noncontextuality inequalities

60



choose circuit find states/mmts/etc

Find the GPT identities these satisfy

…these imply constraints on any potential classical model

…which imply constraints on the observable data  pr(k|M,P)

61

k

P M
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noncontextuality inequalities



noncontextual 
polytope

63

noncontextuality inequalities



Proof of nonclassicality!
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noncontextual 
polytope



Such proofs do not rely on the 
correctness of quantum theory

quantum set

65

noncontextual 
polytope



1. do theory agnostic tomography to find the GPT 
fragment describing your experiment

2. check if that fragment is simplex-embeddable

Alternative method for testing 
for classical explainability:
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Suggested references:
Basic definition of noncontextuality:
https://arxiv.org/abs/quant-ph/0406166

Noncontextuality in the GPT framework:
https://arxiv.org/pdf/1911.10386v2.pdf

NC beyond prepare and measure scenarios:
https://arxiv.org/pdf/2005.07161.pdf

Deriving all the noncontextuality inequalities:
https://arxiv.org/pdf/1710.08434.pdf

A linear program for testing simplex-embeddability:
https://arxiv.org/pdf/2204.11905 

Experimental tests of noncontextuality:
https://arxiv.org/abs/1710.05948
https://arxiv.org/abs/1710.05948 

Feedback encouraged!
davidschmid10@gmail.com

Youtube:
Noncontextuality, by David Schmid | Solstice of Foundations 2022
https://www.youtube.com/watch?v=M3qn3EHWdOg

https://arxiv.org/abs/quant-ph/0406166
https://arxiv.org/abs/quant-ph/0406166
https://arxiv.org/abs/quant-ph/0406166
https://arxiv.org/pdf/1911.10386v2.pdf
https://arxiv.org/pdf/2005.07161.pdf
https://arxiv.org/pdf/1710.08434.pdf
https://arxiv.org/pdf/2204.11905
https://arxiv.org/abs/1710.05948
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GPT systems
GPT processes

Linear
Map

(sub)stochastic processes
random variables

Classical explanation:
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GPT systems
GPT processes

Any
Map

(sub)stochastic processes
random variables

Relax the assumption of linearity
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Really, we are interested in the case where 
we can prove there is still no such model!

(strong) proofs of nonclassicality

Much easier to construct such a representation… 

But NOT a classical explanation in the usual sense 
(doesn’t explain the convex geometry of the theory)
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Example: Bell’s theorem



quantum classical

Alice Bob

Given a causal structure, what correlations can be observed?

impossible!

x

a

y

b

75

Bell’s theorem



x,y,a,b, ∈ {0,1}

(in classical theory?)x

a

y

b

each party has two binary-outcome measurements

What kind of correlations 
can be observed?
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What kind of correlations 
can be observed?

(in classical theory?)x

a

y

b
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What kind of correlations 
can be observed?

(in classical theory?)x

a

y

b

Any correlation of this form must satisfy some constraints:
1. p(b|xy)=p(b|y)



Any correlation of this form must satisfy some constraints:
1. p(b|xy)=p(b|y)        No signaling

(in classical theory?)x

a

y

b
What kind of correlations 
can be observed?
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Any correlation of this form must satisfy some constraints:
1. p(b|xy)=p(b|y), p(a|xy)=p(a|x)  No signaling
2. p(a⊕b=xy) ≤ 3/4    Bell inequality

(in classical theory?)x

a

y

b
What kind of correlations 
can be observed?
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p(a⊕b=xy) ≤ 3/4 

(in classical theory?)x

a

y

b
What kind of correlations 
can be observed?
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p(a⊕b=xy) ≤ 3/4 

(in classical theory?)x

a

y

b
What kind of correlations 
can be observed?

¼[p(same|x=0,y=0)
82



p(a⊕b=xy) ≤ 3/4 

(in classical theory?)x

a

y

b
What kind of correlations 
can be observed?

¼[p(same|x=0,y=0)+p(same|x=0,y=1)
83



p(a⊕b=xy) ≤ 3/4 

(in classical theory?)x

a

y

b
What kind of correlations 
can be observed?

¼[p(same|x=0,y=0)+p(same|x=0,y=1)+p(same|x=1,y=0)
84



p(a⊕b=xy) ≤ 3/4 

(in classical theory?)x

a

y

b
What kind of correlations 
can be observed?

¼[p(same|x=0,y=0)+p(same|x=0,y=1)+p(same|x=1,y=0)+p(opposite|x=1,y=1)]



¼[p(same|x=0,y=0)+p(same|x=0,y=1)+p(same|x=1,y=0)+p(opposite|x=1,y=1)] ≤ 3/4
p(a⊕b=xy) ≤ 3/4 

(in classical theory?)x

a

y

b
What kind of correlations 
can be observed?

a0

b1

b0

a1

same

opposite

ax := value of a given x
by := value of b given y



Note: we snuck in an assumption of determinism!

But adding randomness can’t help you generate correlations, 
so we can drop this assumption.
(Fine’s theorem)

ax := value of a given x
by := value of b given y
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x

a

y

b

88



ƛ
x

a

y

b

“factorization condition”

ƛ = “hidden variable”

89



So in a classical world, this causal structure 
implies that Bell inequalities must be satisfied

p(a⊕b=xy) ≤ 3/4 ⇒
x

a

y

b

90



x ∈ 0,1

a ∈ 0,1
What correlations can be 
observed in quantum theory?

y ∈ 0,1

b ∈ 0,1



x ∈ 0,1

a ∈ 0,1
What correlations can be 
observed in quantum theory?

y ∈ 0,1

b ∈ 0,1

Any correlation of this form must satisfy some constraints:
1. p(b|xy)=p(b|y), p(a|xy)=p(a|x)  No signaling

|

|
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x ∈ 0,1

a ∈ 0,1

y ∈ 0,1

b ∈ 0,1

Any correlation of this form must satisfy some constraints:
1. p(b|xy)=p(b|y), p(a|xy)=p(a|x)  No signaling
2. p(a⊕b=xy) ≤ .854    Tsirelson inequality

What correlations can be 
observed in quantum theory?
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Optimal quantum strategy:

Alice’s mmts Bob’s mmts

p(a⊕b=xy): ~0.85

For more details, go to Youtube:
Non-locality, by Paul Skrzypczyk | Solstice of Foundations 2022

shared entanglement



P (XY|ST)Local polytope

More generally, you can derive the whole set 
of Bell inequalities for a given scenario

P (XY|ST)



Local polytope

Quantum set

GPT set

More generally, you can derive the whole set 
of Bell inequalities for a given scenario
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P (XY|ST)



Local polytope

Quantum set

GPT set

More generally, you can derive the whole set 
of Bell inequalities for a given scenario
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P (XY|ST)



Given a causal structure, what correlations can be observed?

quantum classical

no such map!

This is genuine nonclassicality in the sense of the previous lecture!

98

Theory-independent certification of nonclassicality!

if p(a⊕b=xy) > ¾: 
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The lesson of Bell’s theorem



spacelike separation

a b

x y

One of these must be false:
-Bell causal structure
-classical GPT 

Alternative framing of assumptions
-locality 
-no-retrocausality
-no superdeterminism
-hidden variables 

What do violations of Bell inequalities teach us?

-justified by relativity theory
-justified by traditional notion of realism
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Superluminal causal influences?

101



Retrocausal influences?

102



Superdeterminism?

103



Give up on causal explanation (and realism) altogether?

Unperformed experiments have no results
-Asher Peres
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Give up on classical framework for causal explanation?

“nonclassical causal explanations”

105
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General circuit structures



Triangle scenario Instrumental scenario

Bilocality scenario Evans scenario

Quantum-
classical gaps

107



Necessary condition for classical explainability
If no such map exists ⇒ strong manifestation of nonclassicality

Quantum

ANY
Map

Classical theory

108



“Causal compatibility”

Or more directly: is a given 
P(abc…|xyz…) consistent with the 
assumed causal structure and theory? 
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Noncontextuality test

Necessary and sufficient
   for classical explainability

Does not require:
specific causal structure
multiple systems
entanglement
incompatible mmts
freedom of choice
highly efficient detectors
space-like separation

110

Bell-like tests

Weaker assumptions

Does not require:
as many mmts/prepnsDoes not require: 

validity of quantum thry
determinism
pure states
projective mmts
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Suggested references:

Causal modeling perspective on Bell’s theorem:
https://arxiv.org/abs/1208.4119

Review article:
https://arxiv.org/pdf/1303.2849 

Feedback encouraged!
davidschmid10@gmail.com

Youtube:
Non-locality, by Paul Skrzypczyk | Solstice of Foundations 2022
https://www.youtube.com/watch?v=rYFlWlfW6mk 

https://arxiv.org/abs/1208.4119
https://arxiv.org/pdf/1303.2849
https://www.youtube.com/watch?v=rYFlWlfW6mk
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Naïve answer: Just check how much a Bell inequality is violated…

We can tell if the common 
cause is classical or 
nonclassical based on the 
observed correlations p(ab|xy)

a b

x y

Can we also tell how nonclassical it is?

We need a resource theory!



Resource theory of 
Local Operations and Shared Randomness



Second motivation: unify and simplify a huge range 
of foundational concepts (in Bell scenarios)

116



Types of Resources



Resources:

Trivial

Unspecified

Classical

Quantum

Alice Bob

no-signaling quantum channels 
distributed among various parties
(focus on bipartite case for simplicity)

The type of a resource is determined by the nature of its 
input and output systems: quantum, classical, or trivial

Graphical notation:
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Resource type (examples)

quantum 
state

no-signaling
box
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quantum 
state

no-signaling
box

Resource type (examples)
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quantum 
state

no-signaling
box

steering 
assemblage

Resource type (examples)

Named after Einstein, 
Podolsky, and Rosen
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example of steering

Alice measures 0/1 basis: updated state on Bob’s side will be 1 or 0
Alice measures +/- basis: updated state on Bob’s side will be - or +
Alice measures +i/-i basis: updated state on Bob’s side will be -i or +i

If you think the quantum state is ontic, 
then this is already a proof of nonlocality!
-More sensible conclusion: quantum state is epistemic

assemblage
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quantum 
state

no-signaling
box

steering 
assemblage

distributed
measurement

Resource type (examples)
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quantum 
state

no-signaling
box

steering 
assemblage

contains the relevant 
information for 
teleportation

teleportation 
protocol:

distributed
measurement

quantum
teleportage

Resource type (examples)
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quantum 
state

no-signaling
box

steering 
assemblage

measurement-device-
independent steering

channel
 assemblage

Bob-with-input
assemblage

distributed
ensemble-preparation

bipartite 
channel

Resource type (examples)

distributed
measurement

quantum
teleportage
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Five new nontrivial bipartite scenarios/resource types:

Open question: foundational or practical significance?
-five new manifestations of nonclassicality

Remaining types are all trivial:

etc

126



(Non)Free Resources



The KEY step in any resource theoretic research
is identifying the relevant set of free operations.

What are the physical restrictions in the scenario under study?
-no cause-effect relations (no communication)
-locally unrestricted
-common causes are allowed

So, we allow local quantum operations and classical common 
causes. Then, anything nonfree requires a nonclassical common 
cause

local operations and shared randomness (LOSR) 

128



Free LOSR resources:
those simulable by

-local operations
-shared randomness
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is LOSR-free if it decomposes as

otherwise, it a nonfree resource

a bipartite density operator

separable

entangled

130



is LOSR-free if it decomposes as

otherwise, it is a nonfree resource

a bipartite correlation (or “box”)

local

nonlocal

A B

X Y
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is LOSR-free if it decomposes as

otherwise, it is a nonfree resource

a bipartite steering assemblage

unsteerable!

steerable

A B

X

132



Free LOSR resources:

separable
state

local
box

unsteerable
assemblage

classical
teleportage

those simulable by
-local operations
-shared randomness

etc

In every case, the `useless’ set is the LOSR free set!
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Resource Transformations



State-to-State conversions

-arbitrary local channels
-correlated by shared randomness
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Box-to-Box conversions

relabeling, coarse-graining, etc
136



Box-to-Box conversions

relabeling, coarse-graining, etc

-arbitrary local pre-and-post 
processings
-correlated by shared 
randomness

137



State-to-Box transformations

138



1. Draw this figure
2. Specialize system types 

General procedure:
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1. Draw this figure
2. Specialize system types 

Ex: Channel-to-Assemblage transformations
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1. Draw this figure
2. Specialize system types 

Channel-to-Assemblage transformations
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1. Draw this figure
2. Specialize system types 

Channel-to-Assemblage transformations
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Quantifying nonclassicality of common cause



Preorder of resources (of arbitrary types!)

XYZ

XZ

0.207

0.366

1.0
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Transformations among types which 
necessarily destroy all nonclassicality



Nonclassicality degrading type changes

box to state
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box to state

proof

Nonclassicality degrading type changes

wlog:
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box to state

proof

Nonclassicality degrading type changes

wlog:
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box to state

proof

Nonclassicality degrading type changes

wlog:
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box to state

proof

Nonclassicality degrading type changes

wlog:



box to state

box to assemblage

assemblage to state

Proofs are similar

Nonclassicality degrading type changes
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Transformations among types which 
preserve all nonclassicality



-every resource can be converted to one with classical outputs 
and quantum inputs, without degrading its LOSR nonclassicality

The `distributed measurement’ type encodes the 
nonclassicality of all other types.

Proof:

(same for all other quantum outputs)

same equivalence class as 

153



Can all nonfree states be transformed 
into some box that is nonfree?

No! “Werner states cannot violate any Bell inequality”
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LOSR-entanglement vs LOCC-entanglement



A pure state is entangled if it is not a tensor product of two components
—Schrodinger

A mixed state is entangled if it is not separable (a mixture of product states)

Over time, entanglement came to be understood as “the 
resource which cannot be generated by LOCC operations”.

Entanglement is a resource for quantum communication tasks 
(teleportation, quantum Shannon theory, etc)

To study entanglement as a resource for nonclassical 
communication, Classical Communication was considered free (as 
were Local Operations)

156
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Quantitatively a very different notion of entanglement!
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So, are the relevant free operations for 
studying entanglement LOCC or LOSR?

It depends on the situation!
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Bell scenario: 
LOSR

A B

common-cause scenario

Quantum communication: 
LOCC

A B

cause-effect scenario

160



Resolving the Anomalies of Nonlocality



There exist measures of nonlocality which can be maximized by a 
partially entangled state, but not by a maximally entangled state.

The “anomaly”: 
sometimes, having more entanglement means 
one cannot generate as much nonlocality!

162



Consider the family of states given by

increasing LOCC-
entanglement

naively, having strictly more entanglement can’t hurt for generating nonlocality

Four instances of the anomaly
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Consider using these states to generate nonlocality, as measured by:
1. probability of running a Hardy proof of nonlocality
2. violation of a tilted Bell inequality
3. extractable secret key rate
4. relative entropy distance from the local set

The optimum is different in each case

Four instances of the anomaly

increasing LOCC-
entanglement
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By definition

But

Apparent 
inconsistency

Entanglement theory says

LOCC

LO

LO

But we have argued that one must take 
all three of these relative to LOSR

(a resource-theoretic spin on the anomaly)
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Consistent!

Under LOSR operations

Under LOSR operations

Under LOSR operations
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incomparable to 

Relative to LOSR

Hence the terms “maximally entangled” and “partially 
entangled” are not appropriate for LOSR-entanglement
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Consider again the family of states given by

ALL of these states are LOSR-incomparable!
So there is no single measure of LOSR-entanglement.

LOSR-monotone M1

e.g.

LOSR-monotone M2

increasing LOCC-
entanglement
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Consider again the family of states given by

For each anomaly, the associated task (generating a Hardy paradox, 
generating a secret key, etc) has its own optimal state, and defines a 
monotone which is peaked at that state!

increasing LOCC-entanglement
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Standard conclusion from the anomalies: 
Nonlocality and entanglement are “different resources”

Better conclusion: Nonlocality and LOSR-
entanglement are manifestations of the same 
resource (nonclassicality of common cause)

More nonclassicality is always better if you measure it correctly
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Suggested references:

LOSR entanglement and nonlocality
arXiv:2004.09194  

LOSR resources of all types
arXiv:1909.04065

Resource theory of nonlocality
arXiv:1903.06311  

Feedback encouraged!
davidschmid10@gmail.com

PIRSA:
https://pirsa.org/20040095
https://pirsa.org/19110120 

https://pirsa.org/20040095
https://pirsa.org/19110120
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