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Quantum Gravity landscape
great variety; many mutual relations; many shared issues; mostly same goals

but QG issues and goals are indeed shared, and often technical tools are also related, and ideas of more general use .....
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goals

outline general issues in QG, choices to be made, alternative perspectives and possibilities, more than specific results

suggest what to look for in various QG formalisms, going beyond technical issues, mostly focusing on conceptual aspects

show how QG is "as foundational as it gets"

hint at overlap with quantum foundations



First things first:

what we know about 

(physical) space and time



absolute space, absolute timeNewtonian physics

with preferred (temporal) coordinate/direction

physical, but not dynamical nor subject to influence of other entities

• continuum nature


• preferred foliation of spacetime manifold


• Galilean invariance (no preferred spatial direction, 
relativity of inertial frames))
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Special Relativity absolute spacetime

with preferred class of (spatio-temporal) 
coordinates/directions

physical but not dynamical nor subject to 
influence of other entities

• continuum nature, foliability


• Lorentz invariance (relativity of inertial 
frames)

key point: finite (and absolute and maximal) 
propagation speed of light 



•    gravitational physics well described by General Relativity


• basis for our description of astrophysics and cosmology


•   predicts amazing new phenomena (deflection of light, gravitational distortion of space and time 
measurements, gravitational waves, black holes, expansion of universe, …….)

1 Quantum theory and gravity – what is the
connection?

According to our current knowledge, the fundamental interactions of Nature
are the strong, the electromagnetic, the weak, and the gravitational interac-
tions. The first three are successfully described by the Standard Model of
particle physics, in which a partial unification of the electromagnetic and the
weak interactions has been achieved. Except for the non-vanishing neutrino
masses, there exist at present no empirical fact that is clearly at variance with
the Standard Model. Gravity is described by Einstein’s theory of general rel-
ativity (GR), and no empirical fact is known that is in clear contradiction to
GR. From a pure empirical point of view, we thus have no reason to search
for new physical laws. From a theoretical (mathematical and conceptual)
point of view, however, the situation is not satisfactory. Whereas the Stan-
dard Model is a quantum field theory describing an incomplete unification of
interactions, GR is a classical theory. Let us have a brief look at Einstein’s
theory, see, for example, Misner et al. (1973). It can be defined by the
Einstein–Hilbert action

SEH =
c4

16πG

∫

M

d4x
√
−g (R− 2Λ)− c4

8πG

∫

∂M

d3x
√
hK, (1)

where g is the determinant of the metric, R the Ricci scalar, and Λ is the
cosmological constant. In addition to the two main terms, which consist of
integrals over a spacetime region M, there is a term that is defined on the
boundary ∂M (here assumed to be space-like) of this region. This term is
needed for a consistent variational principle; here, h is the determinant of
the three-dimensional metric, and K is the trace of the second fundamental
form.

In the presence of non-gravitational fields, (1) is augmented by a ‘matter
action’ Sm. From the sum of these actions, one finds Einstein’s field equations
by variation with respect to the metric,

Gµν := Rµν −
1

2
gµνR =

8πG

c4
Tµν − Λgµν . (2)

The right-hand side displays the symmetric (Belinfante) energy–momentum
tensor

Tµν =
2√
−g

δSm

δgµν
, (3)

plus the cosmological-constant term, which may itself be accommodated into
the energy–momentum tensor as a contribution of the ‘vacuum energy’. If
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•    what do we learn from GR?


• gravitational interaction described (macroscopically) by geometry of spacetime


• continuum, local picture of spacetime adequate


• dynamics and (local) interaction with matter described by Einstein’s equations: “matter tells 
spacetime how to curve, spacetime tells matter how to move”


• spacetime itself is physical system

• there is no fixed background over which things happen, if not as approximation


• deeper understanding of gravity is deeper understanding of space and time
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Nature of spacetime: lessons from GR
main lesson: spacetime is a physical system

• gravity = spacetime geometry (spatial distances, time 
intervals, curvature of space, volumes, …..)

• mass-energy of material bodies “deformes” spacetime, 
this deformation affects motion of other material bodies

• deformation of spacetime is what we call “gravity”

• spacetime deformation itself has own dynamics

R(t) �(t)

=) R(t) t(�)

=) R(�)

|t1i , |t2i, ..... |tni , .... (1)

gµ⌫(t, x) ds2 = gttdt
2 + g12 dx1dx2 (2)

1

Rµ⌫ [g(x)]� 1
2
R[g(x)] + ⇤gµ⌫(x) = 8⇡GNTµ⌫ [�(x), ...]

Einstein’s equations (constraint for 
allowed configurations of spacetime 
geometry and matter fields)



Space and Time in General Relativity

GR key ingredients:  only dynamical fields + diffeomorphism invariance


• no preferred time/space direction - infinity of equally valid local notions of time/space


• manifold points, paths on manifolds, values of fields at points or regions, are -not- physical per se


• they have to be made physical (given some operational meaning) by defining them via dynamical fields

classical theory: S

S

M

2

1

g

h

h
2

1

(M , g) SM(g) Rµ⌫(g) � 1

2
R(g)gµ⌫ + ⇤ gµ⌫ = 0

spacetime structures:

topological manifold

differentiable structure

continuum metric field

matter/gauge fields

all these spacetime structures have to be questioned

none of these spacetime structures should be simply assumed as fundamental

these structures are basis for local, spatiotemporal description of physical universe in terms of field theory





The problem  
of 

Quantum Gravity



starting point: conceptual, physical, mathematical clash

two incompatible conceptual (and mathematical) frameworks for space, time, geometry and matter

spacetime (geometry) is a dynamical entity itself

there are no preferred temporal (or spatial) directions

physical systems are local and locally interacting

everything (incl. spacetime) evolves deterministically

all dynamical fields are continuous entities

every property of physical systems (incl. spacetime) and 
of their interactions can be precisely determined, in 
principle

spacetime is fixed background for fields’ dynamics

evolution is unitary (conserved probabilities) with 
respect to a given (preferred) temporal direction   

nothing can be perfectly localised

everything evolves probabilistically

interaction and matter fields are made of “quanta” 

every property of physical systems and their 
interactions is intrinsically uncertain, in general

GR QFT

framework and ingredients of GR are incompatible with what we learned from Quantum Mechanics
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everything evolves probabilistically

interaction and matter fields are made of “quanta” 

every property of physical systems and their 
interactions is intrinsically uncertain, in general

GR QFT

framework and ingredients of GR are incompatible with what we learned from Quantum Mechanics

two frameworks come with different associated mathematical language and tools

conceptual + mathematical clash is clear



deeper understanding of gravity 

is 


deeper understanding of space and time

but:


space and time are the basic infrastructure and condition 
sine qua non of our conceptualisation of the world .....


...... difficult

we have to learn to think deeper about the nature of space 
and time themselves, thus we have to learn to  

(re-)think the world without (assuming) space and time



summary of physical issues
•  no proper understanding of interaction of geometry with quantum matter, if gravity is not quantized

fermionic fields are added, one must generalize GR to the Einstein–Cartan
theory or to the Poincaré gauge theory, because spin is the source of torsion,
a geometric quantity that is identically zero in GR (see e.g. Gronwald and
Hehl 1996).

As one recognizes from (2), these equations can no longer have exactly the
same form if the quantum nature of the fields in Tµν is taken into account. For
then we have operators in Hilbert space on the right-hand side and classical
functions on the left-hand side. A straightforward generalization would be
to replace Tµν by its quantum expectation value,

Rµν −
1

2
gµνR + Λgµν =

8πG

c4
⟨Ψ|T̂µν |Ψ⟩. (4)

These ‘semiclassical Einstein equations’ lead to problems when viewed as
exact equations at the most fundamental level, cf. Carlip (2008) and the
references therein. They spoil the linearity of quantum theory and even
seem to be in conflict with a performed experiment (Page and Geilker 1981).
They may nevertheless be of some value in an approximate way. Independent
of the problems with (4), one can try to test them in a simple setting such as
the Schrödinger–Newton equation; it seems, however, that such a test is not
realisable in the foreseeable future (Giulini and Grossardt 2011). This poses
the question of the connection between gravity and quantum theory (Kiefer
2012).

Despite its name, quantum theory is not a particular theory for a partic-
ular interaction. It is rather a general framework for physical theories, whose
fundamental concepts have so far exhibited an amazing universality. Despite
the ongoing discussion about its interpretational foundations (which we shall
address in the last section), the concepts of states in Hilbert space, and in
particular the superposition principle, have successfully passed thousands of
experimental tests.

It is, in fact, the superposition principle that points towards the need for
quantizing gravity. In the 1957 Chapel Hill Conference, Richard Feynman
gave the following argument (DeWitt and Rickles 2011, pp. 250–60), see also
Zeh (2011). He considers a Stern–Gerlach type of experiment in which two
spin-1/2 particles are put into a superposition of spin up and spin down and
is guided to two counters. He then imagines a connection of the counters to a
ball of macroscopic dimensions. The superposition of the particles is thereby
transferred to a superposition of the ball being simultaneously at two posi-
tions. But this means that the ball’s gravitational field is in a superposition,
too! In Feynman’s own words (DeWitt and Rickles 2011, p. 251):

Now, how do we analyze this experiment according to quantum
mechanics? We have an amplitude that the ball is up, and an

2

not a consistent fundamental theory

• QFT framework problematic if background spacetime is dynamical (and spacetime metric has no isometries)

• eqns need to be solved by self-consistent iteration:


• metric --> e-m tensor --> expectation value --> for new metric --> new em tensor --> ...

• the process does not converge; equations too non-linear


• expectation value of em tensor at a point diverges; regularization is tricky

• renormalization of quantum effects produce modifications of Einsteins' equations (e.g. R^2 terms) ....

• UV regime of QFT on given background is problematic (e.g. black hole production? then, BH evaporation? unitarity?)

• expectation values not enough: quantum fluctuations of matter should induce fluctuations of geometry

• which vacuum state? inequivalent quantum theories ....



summary of physical issues

three old arguments:

• classical gravitational measurements can lead to (possibly large) violations of basic QFT principles 
(momentum conservation, bound on signalling speed) - Eppley-Hannah (1977)


• no localization of sources of gravitational field, thus non-local gravity - Page-Geilker (1981)

• classical gravitational modifications of quantum mechanics (becoming non-linear)  - Carlip (2008)

exemplary of a number of similar ones
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general expectation, various arguments + formal reasons, but maybe also experimental window
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• spacetime singularities: breakdown of GR for strong gravitational fields/large energy densities - inevitable in classical GR
center of black holes, big bang - quantum effects expected to be important

summary of physical issues
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R. Brandenberger, ’10, ’11, ’14 

Inflation • what produces inflation? 
• physics of trans-Planckian modes (for long inflation)?
• inflation too close to Planck regime?
• inflationary spacetime still contains singularity

Bouncing cosmology • new physics needed to describe/justify cosmological bounce

Emergent universe 
(pre-big bang static phase)

• static phase and phase transition require new physics 



new QG dofs? primordial 
(quantum) black holes?

summary of physical issues

new type of matter?

cosmological constant? 

new QG dof?

why doesn't it gravitate?

modified gravity?

spacetime microstructure?

violation of unitarity? locality? .....

why holographic entropy?

all require QG



Dark Matter new QG dofs? primordial 
(quantum) black holes?

summary of physical issues

new type of matter?

cosmological constant? 

new QG dof?

why doesn't it gravitate?

modified gravity?

spacetime microstructure?

violation of unitarity? locality? .....

why holographic entropy?

all require QG



Dark Matter • new type of matter, not interacting with EM field (thus not 
visible), and non-standard in other ways

new QG dofs? primordial 
(quantum) black holes?

summary of physical issues

new type of matter?

cosmological constant? 

new QG dof?

why doesn't it gravitate?

modified gravity?

spacetime microstructure?

violation of unitarity? locality? .....

why holographic entropy?

all require QG



Dark Matter • new type of matter, not interacting with EM field (thus not 
visible), and non-standard in other ways

• modified gravitational physics (incl. GR) at galactic scales

new QG dofs? primordial 
(quantum) black holes?

summary of physical issues

new type of matter?

cosmological constant? 

new QG dof?

why doesn't it gravitate?

modified gravity?

spacetime microstructure?

violation of unitarity? locality? .....

why holographic entropy?

all require QG



Dark Matter • new type of matter, not interacting with EM field (thus not 
visible), and non-standard in other ways

• modified gravitational physics (incl. GR) at galactic scales QG modifying large-scale physics?

new QG dofs? primordial 
(quantum) black holes?

summary of physical issues

new type of matter?

cosmological constant? 

new QG dof?

why doesn't it gravitate?

modified gravity?

spacetime microstructure?

violation of unitarity? locality? .....

why holographic entropy?

all require QG



Dark Matter • new type of matter, not interacting with EM field (thus not 
visible), and non-standard in other ways

• modified gravitational physics (incl. GR) at galactic scales QG modifying large-scale physics?

new QG dofs? primordial 
(quantum) black holes?

summary of physical issues

new type of matter?

cosmological constant? 

new QG dof?

why doesn't it gravitate?

modified gravity?

spacetime microstructure?

violation of unitarity? locality? .....

why holographic entropy?

all require QG



Dark Matter • new type of matter, not interacting with EM field (thus not 
visible), and non-standard in other ways

• modified gravitational physics (incl. GR) at galactic scales QG modifying large-scale physics?

new QG dofs? primordial 
(quantum) black holes?

summary of physical issues

Dark Energy new type of matter?

cosmological constant? 

new QG dof?

why doesn't it gravitate?

modified gravity?

spacetime microstructure?

violation of unitarity? locality? .....

why holographic entropy?

all require QG



Dark Matter • new type of matter, not interacting with EM field (thus not 
visible), and non-standard in other ways

• modified gravitational physics (incl. GR) at galactic scales QG modifying large-scale physics?

new QG dofs? primordial 
(quantum) black holes?

summary of physical issues

Dark Energy new type of matter?

cosmological constant? 

new QG dof?

why doesn't it gravitate?

modified gravity?

spacetime microstructure?

violation of unitarity? locality? .....

why holographic entropy?

all require QG



Dark Matter • new type of matter, not interacting with EM field (thus not 
visible), and non-standard in other ways

• modified gravitational physics (incl. GR) at galactic scales QG modifying large-scale physics?

new QG dofs? primordial 
(quantum) black holes?

summary of physical issues

Dark Energy new type of matter?

cosmological constant? 

new QG dof?

why doesn't it gravitate?

modified gravity? QG modifying large-scale physics?

spacetime microstructure?

violation of unitarity? locality? .....

why holographic entropy?

all require QG



Dark Matter • new type of matter, not interacting with EM field (thus not 
visible), and non-standard in other ways

• modified gravitational physics (incl. GR) at galactic scales QG modifying large-scale physics?

new QG dofs? primordial 
(quantum) black holes?

summary of physical issues

Dark Energy new type of matter?

cosmological constant? 

new QG dof?

why doesn't it gravitate?

modified gravity? QG modifying large-scale physics?

Black hole/spacetime thermodynamics + evaporation

spacetime microstructure?

violation of unitarity? locality? .....

why holographic entropy?

all require QG



Dark Matter • new type of matter, not interacting with EM field (thus not 
visible), and non-standard in other ways

• modified gravitational physics (incl. GR) at galactic scales QG modifying large-scale physics?

new QG dofs? primordial 
(quantum) black holes?

summary of physical issues

Dark Energy new type of matter?

cosmological constant? 

new QG dof?

why doesn't it gravitate?

modified gravity? QG modifying large-scale physics?

Black hole/spacetime thermodynamics + evaporation

spacetime microstructure?

violation of unitarity? locality? .....

why holographic entropy?

all require QG



how one approaches these physical issues depends on perspective on QG and spacetime, 
and of course on specific QG formalism 

can we avoid or at least postpone conceptual/foundations issues?
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ABSTRACT

A good understanding of Perturbative Quantum Gravity is essential for anyone
who wishes to proceed towards any kind of non-perturbative approach. This
lecture is a brief resummé of the main features of the perturbative regime.

1. INTRODUCTION:
Perturbative Quantum Gravity as a gauge theory.

The Einstein-Hilbert action describing General Relativity is

S =
Z
L(x) d4

x ; L(x) =
p
°g

µ
R

16ºG
+ Lmatter

∂
. (1.1)

R is the Ricci scalar curvature. g is the determinant of the metric tensor gµ∫ . The rule
is that the matter Lagrangian must be made completely covariant by inserting the metric
tensor gµ∫(x) or its inverse, g

µ∫(x) whereever needed. gµ∫ , with its proper Minkowski
signature, is promoted to being a dynamical variable. The variational principle with gµ∫

and the matter fields as dynamical variables gives us the classical field equations obeyed
by these variables. We assume here that the most essential principles of General Relativity
are known[1]; let us recapitulate the most basic features that we need.

1

• to define a perturbative, linear theory, we expand the generic metric as:

i.e. we only deal with small perturbations around flat spacetime, as the dynamical field

The “gauge transformation” in this theory is the space-time dependent coordinate
transformation,

x
µ ! x

µ + "¥
µ(x), (1.2)

where " is infinitesimal, and ¥
µ(x) is the space-time dependent generator of this trans-

formation. The metric tensor transforms as

gµ∫ ! gµ∫ + " (¥Æ
@Ægµ∫ + gÆ∫@µ¥

Æ + gµÆ@∫¥
a) . (1.3)

The last two terms here tell us that gµ∫ transforms as a tensor. In perturbation theory,
we will write (using Euclidean notation):

gµ∫ = ±µ∫ + "hµ∫ , (1.4)

where hµ∫ is taken to be infinitesimal. The transformation rule for hµ∫ can be written as

hµ∫ ! hµ∫ + Dµ¥∫ + D∫¥µ , (1.5)

where we used the notion of a covariant derivative:

Dµ¥∫ ¥ @µ¥∫ ° ΓÆ
µ∫¥Æ . (1.6)

It adds to the two gradients of ¥∫ in Eq. (1.3) not only the first term in Eq. (1.3), but
also the extra terms one gets by lowering the index of the ¥

Æ field using the metric gÆ∫ .

The expressions giving R in terms of the metric tensor gµ∫ are quite non-linear:1

ΓÆµ∫ = 1
2(@µgÆ∫ + @∫gÆµ ° @Ægµ∫) ; Γ∏

µ∫ = g
∏ÆΓÆµ∫ . (1.7)

R
∏
Æµ∫ = @µΓ∏

Æ∫ ° @∫Γ
∏
Æµ + Γ∏

µæΓæ
Æ∫ ° Γ∏

∫æΓæ
Æµ ; (1.8)

R = g
Æ∫

R
µ
Æµ∫ . (1.9)

Substituting (1.4) and writing

g
µ∫ = ±

µ∫ ° "hµ∫ + "
2
hµÆhÆ∫ + · · · , (1.10)

we can expand the action (1.1) in powers of hµ∫ . This results in an expression that we
can write as

L = 1
2hÆØVÆØµ∫hµ∫ + (higher orders) , (1.11)

where VÆØµ∫ is a fairly complicated expression. The Euler-Lagrange equations following
from varying this Lagrangian do not have unique solutions unless we impose a gauge
condition. To understand what will happen physically, it is best first to consider the
radiation gauge:

3X

i=1

@ihiµ = 0 ; µ = 1, · · · , 4. (1.12)

1There is a way to make these equations look nearly linear, by using a more sophisticated choice of
variables[2], but the physics remains the same, and interactions due to non-linearity remain present.
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• quantize using standard QFT methods around free theory, relying on background structures provided by flat metric

• the gravitational coupling is dimensionful with dimension of length square
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[G] = L2

and it also plays the role of expansion parameter

Choosing

" =
p

16ºG , (1.13)

and going to Fourier space,

f(x) = 1
(2º)2

Z
d4

k e
ikx

f̂(k) , (1.14)

one finds for VÆØµ∫

VÆØµ∫ = 1
2k

2(±Æµ±Ø∫ ° ±ÆØ±µ∫) + kµk∫±ÆØ ° kØk∫±Æµ + b
2~kØ

~k∫±Æµ , (1.15)

where ~k is k with its time component replaced by 0, and the parameter b
2 is sent to

infinity, so as to impose Eq. (1.12).

These expressions look complicated, but they become a lot more transparent of we
rotate ~k into the z -direction,

~kµ = (0, 0, ∑, 0) . (1.16)

To find the propagator in this gauge, we first have to symmetrize VÆØµ∫ with respect to
interchanges Æ$ Ø , µ$ ∫ and (ÆØ)$ (µ∫). The propagator P is solved from

V · P = I ; I = 1
2(±Æµ±Ø∫ + ±Æ∫±Øµ) . (1.17)

The solution to this tensor equation is

Pµ∫ÆØ =
1

k2

µ
±̂Æµ±̂Ø∫ + ±̂Æ∫ ±̂Øµ °

2

n° 2
±̂ÆØ ±̂µ∫

∂
+

terms containing only ~k
2 in their denominators, (1.18)

where ±̂ is defined as

±̂µ∫ ¥ diag(1, 1, 0, 0) , (1.19)

and n is the number of space-time dimensions, n = 4 being the physical value. Only the
part explicitly written in Eq. (1.18) represents excitations that actually propagate. One
sees first of all that only the completely transverse components of the field hµ∫ propagate:
µ, ∫ = 1 or 2. Secondly, the diagonal component (the trace) drops out:

Pµµ ÆØ = 0 since ±̂µµ = n° 2 . (1.20)

Since traceless, symmetric 2£2 matrices have only two independent components, we read
off that there are only two propagating modes, the two helicities of the graviton. The
propagator (1.18) propagates a graviton with the speed of light.

For practical calculations of Feynman diagrams and divergences, the radiation gauge
(1.12) is not so suitable, since it violates Lorentz invariance. Let us again consider the
quadratic term of the Lagrangian (1.1) prior to fixing the gauge. It can be written as:

L = 1
8(@æhÆÆ)2 ° 1

4(@æhÆØ)(@æhÆØ) + 1
2A

2
µ ° 1

2Tµ∫hµ∫ (1.21)

+ (total derivative) + (higher orders in h) + Lgauge fix
, (1.22)
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Æ field using the metric gÆ∫ .

The expressions giving R in terms of the metric tensor gµ∫ are quite non-linear:1

ΓÆµ∫ = 1
2(@µgÆ∫ + @∫gÆµ ° @Ægµ∫) ; Γ∏

µ∫ = g
∏ÆΓÆµ∫ . (1.7)

R
∏
Æµ∫ = @µΓ∏

Æ∫ ° @∫Γ
∏
Æµ + Γ∏

µæΓæ
Æ∫ ° Γ∏

∫æΓæ
Æµ ; (1.8)

R = g
Æ∫

R
µ
Æµ∫ . (1.9)

Substituting (1.4) and writing

g
µ∫ = ±

µ∫ ° "hµ∫ + "
2
hµÆhÆ∫ + · · · , (1.10)

we can expand the action (1.1) in powers of hµ∫ . This results in an expression that we
can write as

L = 1
2hÆØVÆØµ∫hµ∫ + (higher orders) , (1.11)

where VÆØµ∫ is a fairly complicated expression. The Euler-Lagrange equations following
from varying this Lagrangian do not have unique solutions unless we impose a gauge
condition. To understand what will happen physically, it is best first to consider the
radiation gauge:

3X

i=1

@ihiµ = 0 ; µ = 1, · · · , 4. (1.12)

1There is a way to make these equations look nearly linear, by using a more sophisticated choice of
variables[2], but the physics remains the same, and interactions due to non-linearity remain present.

2

the metric perturbations have only 2 propagating modes in a Fock representation, 

two helicities of "quantum of the gravitational field" = graviton

• quantize using standard QFT methods around free theory, relying on background structures provided by flat metric

• the gravitational coupling is dimensionful with dimension of length square
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[G] = L2

and it also plays the role of expansion parameter

Choosing

" =
p

16ºG , (1.13)

and going to Fourier space,

f(x) = 1
(2º)2

Z
d4

k e
ikx

f̂(k) , (1.14)

one finds for VÆØµ∫

VÆØµ∫ = 1
2k

2(±Æµ±Ø∫ ° ±ÆØ±µ∫) + kµk∫±ÆØ ° kØk∫±Æµ + b
2~kØ

~k∫±Æµ , (1.15)

where ~k is k with its time component replaced by 0, and the parameter b
2 is sent to

infinity, so as to impose Eq. (1.12).

These expressions look complicated, but they become a lot more transparent of we
rotate ~k into the z -direction,

~kµ = (0, 0, ∑, 0) . (1.16)

To find the propagator in this gauge, we first have to symmetrize VÆØµ∫ with respect to
interchanges Æ$ Ø , µ$ ∫ and (ÆØ)$ (µ∫). The propagator P is solved from

V · P = I ; I = 1
2(±Æµ±Ø∫ + ±Æ∫±Øµ) . (1.17)

The solution to this tensor equation is

Pµ∫ÆØ =
1

k2

µ
±̂Æµ±̂Ø∫ + ±̂Æ∫ ±̂Øµ °

2

n° 2
±̂ÆØ ±̂µ∫

∂
+

terms containing only ~k
2 in their denominators, (1.18)

where ±̂ is defined as

±̂µ∫ ¥ diag(1, 1, 0, 0) , (1.19)

and n is the number of space-time dimensions, n = 4 being the physical value. Only the
part explicitly written in Eq. (1.18) represents excitations that actually propagate. One
sees first of all that only the completely transverse components of the field hµ∫ propagate:
µ, ∫ = 1 or 2. Secondly, the diagonal component (the trace) drops out:

Pµµ ÆØ = 0 since ±̂µµ = n° 2 . (1.20)

Since traceless, symmetric 2£2 matrices have only two independent components, we read
off that there are only two propagating modes, the two helicities of the graviton. The
propagator (1.18) propagates a graviton with the speed of light.

For practical calculations of Feynman diagrams and divergences, the radiation gauge
(1.12) is not so suitable, since it violates Lorentz invariance. Let us again consider the
quadratic term of the Lagrangian (1.1) prior to fixing the gauge. It can be written as:

L = 1
8(@æhÆÆ)2 ° 1

4(@æhÆØ)(@æhÆØ) + 1
2A

2
µ ° 1

2Tµ∫hµ∫ (1.21)

+ (total derivative) + (higher orders in h) + Lgauge fix
, (1.22)
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ABSTRACT

A good understanding of Perturbative Quantum Gravity is essential for anyone
who wishes to proceed towards any kind of non-perturbative approach. This
lecture is a brief resummé of the main features of the perturbative regime.

1. INTRODUCTION:
Perturbative Quantum Gravity as a gauge theory.

The Einstein-Hilbert action describing General Relativity is

S =
Z
L(x) d4

x ; L(x) =
p
°g

µ
R

16ºG
+ Lmatter

∂
. (1.1)

R is the Ricci scalar curvature. g is the determinant of the metric tensor gµ∫ . The rule
is that the matter Lagrangian must be made completely covariant by inserting the metric
tensor gµ∫(x) or its inverse, g

µ∫(x) whereever needed. gµ∫ , with its proper Minkowski
signature, is promoted to being a dynamical variable. The variational principle with gµ∫

and the matter fields as dynamical variables gives us the classical field equations obeyed
by these variables. We assume here that the most essential principles of General Relativity
are known[1]; let us recapitulate the most basic features that we need.

1

• key idea/motivation: GR as the unique non-perturbative completion of a linear theory of massless spin-2 fields

note: this is common belief, but it has been challenged e.g. T. Padmanabhan, gr-qc/9409089

• to define a perturbative, linear theory, we expand the generic metric as:

i.e. we only deal with small perturbations around flat spacetime, as the dynamical field

The “gauge transformation” in this theory is the space-time dependent coordinate
transformation,

x
µ ! x

µ + "¥
µ(x), (1.2)

where " is infinitesimal, and ¥
µ(x) is the space-time dependent generator of this trans-

formation. The metric tensor transforms as

gµ∫ ! gµ∫ + " (¥Æ
@Ægµ∫ + gÆ∫@µ¥

Æ + gµÆ@∫¥
a) . (1.3)

The last two terms here tell us that gµ∫ transforms as a tensor. In perturbation theory,
we will write (using Euclidean notation):

gµ∫ = ±µ∫ + "hµ∫ , (1.4)

where hµ∫ is taken to be infinitesimal. The transformation rule for hµ∫ can be written as

hµ∫ ! hµ∫ + Dµ¥∫ + D∫¥µ , (1.5)

where we used the notion of a covariant derivative:

Dµ¥∫ ¥ @µ¥∫ ° ΓÆ
µ∫¥Æ . (1.6)

It adds to the two gradients of ¥∫ in Eq. (1.3) not only the first term in Eq. (1.3), but
also the extra terms one gets by lowering the index of the ¥

Æ field using the metric gÆ∫ .

The expressions giving R in terms of the metric tensor gµ∫ are quite non-linear:1

ΓÆµ∫ = 1
2(@µgÆ∫ + @∫gÆµ ° @Ægµ∫) ; Γ∏

µ∫ = g
∏ÆΓÆµ∫ . (1.7)

R
∏
Æµ∫ = @µΓ∏

Æ∫ ° @∫Γ
∏
Æµ + Γ∏

µæΓæ
Æ∫ ° Γ∏

∫æΓæ
Æµ ; (1.8)

R = g
Æ∫

R
µ
Æµ∫ . (1.9)

Substituting (1.4) and writing

g
µ∫ = ±

µ∫ ° "hµ∫ + "
2
hµÆhÆ∫ + · · · , (1.10)

we can expand the action (1.1) in powers of hµ∫ . This results in an expression that we
can write as

L = 1
2hÆØVÆØµ∫hµ∫ + (higher orders) , (1.11)

where VÆØµ∫ is a fairly complicated expression. The Euler-Lagrange equations following
from varying this Lagrangian do not have unique solutions unless we impose a gauge
condition. To understand what will happen physically, it is best first to consider the
radiation gauge:

3X

i=1

@ihiµ = 0 ; µ = 1, · · · , 4. (1.12)

1There is a way to make these equations look nearly linear, by using a more sophisticated choice of
variables[2], but the physics remains the same, and interactions due to non-linearity remain present.

2

the metric perturbations have only 2 propagating modes in a Fock representation, 

two helicities of "quantum of the gravitational field" = graviton

• quantize using standard QFT methods around free theory, relying on background structures provided by flat metric

• the gravitational coupling is dimensionful with dimension of length square
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[G] = L2

and it also plays the role of expansion parameter

Choosing

" =
p

16ºG , (1.13)

and going to Fourier space,

f(x) = 1
(2º)2

Z
d4

k e
ikx

f̂(k) , (1.14)

one finds for VÆØµ∫

VÆØµ∫ = 1
2k

2(±Æµ±Ø∫ ° ±ÆØ±µ∫) + kµk∫±ÆØ ° kØk∫±Æµ + b
2~kØ

~k∫±Æµ , (1.15)

where ~k is k with its time component replaced by 0, and the parameter b
2 is sent to

infinity, so as to impose Eq. (1.12).

These expressions look complicated, but they become a lot more transparent of we
rotate ~k into the z -direction,

~kµ = (0, 0, ∑, 0) . (1.16)

To find the propagator in this gauge, we first have to symmetrize VÆØµ∫ with respect to
interchanges Æ$ Ø , µ$ ∫ and (ÆØ)$ (µ∫). The propagator P is solved from

V · P = I ; I = 1
2(±Æµ±Ø∫ + ±Æ∫±Øµ) . (1.17)

The solution to this tensor equation is

Pµ∫ÆØ =
1

k2

µ
±̂Æµ±̂Ø∫ + ±̂Æ∫ ±̂Øµ °

2

n° 2
±̂ÆØ ±̂µ∫

∂
+

terms containing only ~k
2 in their denominators, (1.18)

where ±̂ is defined as

±̂µ∫ ¥ diag(1, 1, 0, 0) , (1.19)

and n is the number of space-time dimensions, n = 4 being the physical value. Only the
part explicitly written in Eq. (1.18) represents excitations that actually propagate. One
sees first of all that only the completely transverse components of the field hµ∫ propagate:
µ, ∫ = 1 or 2. Secondly, the diagonal component (the trace) drops out:

Pµµ ÆØ = 0 since ±̂µµ = n° 2 . (1.20)

Since traceless, symmetric 2£2 matrices have only two independent components, we read
off that there are only two propagating modes, the two helicities of the graviton. The
propagator (1.18) propagates a graviton with the speed of light.

For practical calculations of Feynman diagrams and divergences, the radiation gauge
(1.12) is not so suitable, since it violates Lorentz invariance. Let us again consider the
quadratic term of the Lagrangian (1.1) prior to fixing the gauge. It can be written as:

L = 1
8(@æhÆÆ)2 ° 1

4(@æhÆØ)(@æhÆØ) + 1
2A

2
µ ° 1

2Tµ∫hµ∫ (1.21)

+ (total derivative) + (higher orders in h) + Lgauge fix
, (1.22)

3

one can prove: we get one new divergent term at each new order in perturbation theory

perturbative QG is non-renormalizable
’t Hooft,Veltman, …., Goroff, Sagnotti (1971-1986)
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A good understanding of Perturbative Quantum Gravity is essential for anyone
who wishes to proceed towards any kind of non-perturbative approach. This
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1. INTRODUCTION:
Perturbative Quantum Gravity as a gauge theory.

The Einstein-Hilbert action describing General Relativity is

S =
Z
L(x) d4

x ; L(x) =
p
°g

µ
R

16ºG
+ Lmatter

∂
. (1.1)

R is the Ricci scalar curvature. g is the determinant of the metric tensor gµ∫ . The rule
is that the matter Lagrangian must be made completely covariant by inserting the metric
tensor gµ∫(x) or its inverse, g

µ∫(x) whereever needed. gµ∫ , with its proper Minkowski
signature, is promoted to being a dynamical variable. The variational principle with gµ∫

and the matter fields as dynamical variables gives us the classical field equations obeyed
by these variables. We assume here that the most essential principles of General Relativity
are known[1]; let us recapitulate the most basic features that we need.
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• key idea/motivation: GR as the unique non-perturbative completion of a linear theory of massless spin-2 fields

note: this is common belief, but it has been challenged e.g. T. Padmanabhan, gr-qc/9409089

• to define a perturbative, linear theory, we expand the generic metric as:

i.e. we only deal with small perturbations around flat spacetime, as the dynamical field

The “gauge transformation” in this theory is the space-time dependent coordinate
transformation,

x
µ ! x

µ + "¥
µ(x), (1.2)

where " is infinitesimal, and ¥
µ(x) is the space-time dependent generator of this trans-

formation. The metric tensor transforms as

gµ∫ ! gµ∫ + " (¥Æ
@Ægµ∫ + gÆ∫@µ¥

Æ + gµÆ@∫¥
a) . (1.3)

The last two terms here tell us that gµ∫ transforms as a tensor. In perturbation theory,
we will write (using Euclidean notation):

gµ∫ = ±µ∫ + "hµ∫ , (1.4)

where hµ∫ is taken to be infinitesimal. The transformation rule for hµ∫ can be written as

hµ∫ ! hµ∫ + Dµ¥∫ + D∫¥µ , (1.5)

where we used the notion of a covariant derivative:

Dµ¥∫ ¥ @µ¥∫ ° ΓÆ
µ∫¥Æ . (1.6)

It adds to the two gradients of ¥∫ in Eq. (1.3) not only the first term in Eq. (1.3), but
also the extra terms one gets by lowering the index of the ¥

Æ field using the metric gÆ∫ .

The expressions giving R in terms of the metric tensor gµ∫ are quite non-linear:1

ΓÆµ∫ = 1
2(@µgÆ∫ + @∫gÆµ ° @Ægµ∫) ; Γ∏

µ∫ = g
∏ÆΓÆµ∫ . (1.7)
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Æµ∫ . (1.9)

Substituting (1.4) and writing

g
µ∫ = ±

µ∫ ° "hµ∫ + "
2
hµÆhÆ∫ + · · · , (1.10)

we can expand the action (1.1) in powers of hµ∫ . This results in an expression that we
can write as

L = 1
2hÆØVÆØµ∫hµ∫ + (higher orders) , (1.11)

where VÆØµ∫ is a fairly complicated expression. The Euler-Lagrange equations following
from varying this Lagrangian do not have unique solutions unless we impose a gauge
condition. To understand what will happen physically, it is best first to consider the
radiation gauge:

3X

i=1

@ihiµ = 0 ; µ = 1, · · · , 4. (1.12)

1There is a way to make these equations look nearly linear, by using a more sophisticated choice of
variables[2], but the physics remains the same, and interactions due to non-linearity remain present.

2

the metric perturbations have only 2 propagating modes in a Fock representation, 

two helicities of "quantum of the gravitational field" = graviton

• quantize using standard QFT methods around free theory, relying on background structures provided by flat metric

• the gravitational coupling is dimensionful with dimension of length square
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[G] = L2

and it also plays the role of expansion parameter

Choosing

" =
p

16ºG , (1.13)

and going to Fourier space,

f(x) = 1
(2º)2

Z
d4

k e
ikx

f̂(k) , (1.14)

one finds for VÆØµ∫

VÆØµ∫ = 1
2k

2(±Æµ±Ø∫ ° ±ÆØ±µ∫) + kµk∫±ÆØ ° kØk∫±Æµ + b
2~kØ

~k∫±Æµ , (1.15)

where ~k is k with its time component replaced by 0, and the parameter b
2 is sent to

infinity, so as to impose Eq. (1.12).

These expressions look complicated, but they become a lot more transparent of we
rotate ~k into the z -direction,

~kµ = (0, 0, ∑, 0) . (1.16)

To find the propagator in this gauge, we first have to symmetrize VÆØµ∫ with respect to
interchanges Æ$ Ø , µ$ ∫ and (ÆØ)$ (µ∫). The propagator P is solved from

V · P = I ; I = 1
2(±Æµ±Ø∫ + ±Æ∫±Øµ) . (1.17)

The solution to this tensor equation is

Pµ∫ÆØ =
1

k2

µ
±̂Æµ±̂Ø∫ + ±̂Æ∫ ±̂Øµ °

2

n° 2
±̂ÆØ ±̂µ∫

∂
+

terms containing only ~k
2 in their denominators, (1.18)

where ±̂ is defined as

±̂µ∫ ¥ diag(1, 1, 0, 0) , (1.19)

and n is the number of space-time dimensions, n = 4 being the physical value. Only the
part explicitly written in Eq. (1.18) represents excitations that actually propagate. One
sees first of all that only the completely transverse components of the field hµ∫ propagate:
µ, ∫ = 1 or 2. Secondly, the diagonal component (the trace) drops out:

Pµµ ÆØ = 0 since ±̂µµ = n° 2 . (1.20)

Since traceless, symmetric 2£2 matrices have only two independent components, we read
off that there are only two propagating modes, the two helicities of the graviton. The
propagator (1.18) propagates a graviton with the speed of light.

For practical calculations of Feynman diagrams and divergences, the radiation gauge
(1.12) is not so suitable, since it violates Lorentz invariance. Let us again consider the
quadratic term of the Lagrangian (1.1) prior to fixing the gauge. It can be written as:

L = 1
8(@æhÆÆ)2 ° 1

4(@æhÆØ)(@æhÆØ) + 1
2A

2
µ ° 1

2Tµ∫hµ∫ (1.21)

+ (total derivative) + (higher orders in h) + Lgauge fix
, (1.22)

3

result: perturbatively quantized GR is not a consistent QFT

one can prove: we get one new divergent term at each new order in perturbation theory

perturbative QG is non-renormalizable
’t Hooft,Veltman, …., Goroff, Sagnotti (1971-1986)
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where we used the notion of a covariant derivative:

Dµ¥∫ ¥ @µ¥∫ ° ΓÆ
µ∫¥Æ . (1.6)

It adds to the two gradients of ¥∫ in Eq. (1.3) not only the first term in Eq. (1.3), but
also the extra terms one gets by lowering the index of the ¥

Æ field using the metric gÆ∫ .

The expressions giving R in terms of the metric tensor gµ∫ are quite non-linear:1

ΓÆµ∫ = 1
2(@µgÆ∫ + @∫gÆµ ° @Ægµ∫) ; Γ∏

µ∫ = g
∏ÆΓÆµ∫ . (1.7)

R
∏
Æµ∫ = @µΓ∏

Æ∫ ° @∫Γ
∏
Æµ + Γ∏

µæΓæ
Æ∫ ° Γ∏

∫æΓæ
Æµ ; (1.8)

R = g
Æ∫

R
µ
Æµ∫ . (1.9)

Substituting (1.4) and writing

g
µ∫ = ±

µ∫ ° "hµ∫ + "
2
hµÆhÆ∫ + · · · , (1.10)

we can expand the action (1.1) in powers of hµ∫ . This results in an expression that we
can write as

L = 1
2hÆØVÆØµ∫hµ∫ + (higher orders) , (1.11)

where VÆØµ∫ is a fairly complicated expression. The Euler-Lagrange equations following
from varying this Lagrangian do not have unique solutions unless we impose a gauge
condition. To understand what will happen physically, it is best first to consider the
radiation gauge:

3X

i=1

@ihiµ = 0 ; µ = 1, · · · , 4. (1.12)

1There is a way to make these equations look nearly linear, by using a more sophisticated choice of
variables[2], but the physics remains the same, and interactions due to non-linearity remain present.

2

the metric perturbations have only 2 propagating modes in a Fock representation, 

two helicities of "quantum of the gravitational field" = graviton

• quantize using standard QFT methods around free theory, relying on background structures provided by flat metric

• the gravitational coupling is dimensionful with dimension of length square
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[G] = L2

and it also plays the role of expansion parameter

Choosing

" =
p

16ºG , (1.13)

and going to Fourier space,

f(x) = 1
(2º)2

Z
d4

k e
ikx

f̂(k) , (1.14)

one finds for VÆØµ∫

VÆØµ∫ = 1
2k

2(±Æµ±Ø∫ ° ±ÆØ±µ∫) + kµk∫±ÆØ ° kØk∫±Æµ + b
2~kØ

~k∫±Æµ , (1.15)

where ~k is k with its time component replaced by 0, and the parameter b
2 is sent to

infinity, so as to impose Eq. (1.12).

These expressions look complicated, but they become a lot more transparent of we
rotate ~k into the z -direction,

~kµ = (0, 0, ∑, 0) . (1.16)

To find the propagator in this gauge, we first have to symmetrize VÆØµ∫ with respect to
interchanges Æ$ Ø , µ$ ∫ and (ÆØ)$ (µ∫). The propagator P is solved from

V · P = I ; I = 1
2(±Æµ±Ø∫ + ±Æ∫±Øµ) . (1.17)

The solution to this tensor equation is

Pµ∫ÆØ =
1

k2

µ
±̂Æµ±̂Ø∫ + ±̂Æ∫ ±̂Øµ °

2

n° 2
±̂ÆØ ±̂µ∫

∂
+

terms containing only ~k
2 in their denominators, (1.18)

where ±̂ is defined as

±̂µ∫ ¥ diag(1, 1, 0, 0) , (1.19)

and n is the number of space-time dimensions, n = 4 being the physical value. Only the
part explicitly written in Eq. (1.18) represents excitations that actually propagate. One
sees first of all that only the completely transverse components of the field hµ∫ propagate:
µ, ∫ = 1 or 2. Secondly, the diagonal component (the trace) drops out:

Pµµ ÆØ = 0 since ±̂µµ = n° 2 . (1.20)

Since traceless, symmetric 2£2 matrices have only two independent components, we read
off that there are only two propagating modes, the two helicities of the graviton. The
propagator (1.18) propagates a graviton with the speed of light.

For practical calculations of Feynman diagrams and divergences, the radiation gauge
(1.12) is not so suitable, since it violates Lorentz invariance. Let us again consider the
quadratic term of the Lagrangian (1.1) prior to fixing the gauge. It can be written as:

L = 1
8(@æhÆÆ)2 ° 1

4(@æhÆØ)(@æhÆØ) + 1
2A

2
µ ° 1

2Tµ∫hµ∫ (1.21)

+ (total derivative) + (higher orders in h) + Lgauge fix
, (1.22)

3

result: perturbatively quantized GR is not a consistent QFT

one can prove: we get one new divergent term at each new order in perturbation theory

perturbative QG is non-renormalizable
’t Hooft,Veltman, …., Goroff, Sagnotti (1971-1986)



perturbative framework (QFT + GR) to be obtained as EFT from any fundamental QG formalism

background spacetime/geometry, including flat Minkowski spacetime

+ 
QFT (including gravitons) on top

one key goal of any QG

also to be recovered from more fundamental description



Quantum Gravity: 

main routes



then, two main options:



then, two main options:

1. quantize GR non-perturbatively
apply quantization methods to spacetime/geometry as a whole 

maintain fields, spacetime and geometry as basic dofs/entities 

UV theory (of metric + matter fields) is non-perturbative
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1. quantize GR non-perturbatively
apply quantization methods to spacetime/geometry as a whole 

maintain fields, spacetime and geometry as basic dofs/entities 

UV theory (of metric + matter fields) is non-perturbative

2. extend QFT framework, also in perturbation theory, with new dofs and/or symmetries

extend perturbative QFT formalism with new dofs and symmetries 

quantize perturbatively ensuring UV consistency 

new dofs/symmetries and perturbative theory guide toward full non-perturbative formulation



then, two main options:

• unification? sure, but which unification?

unified framework

unified substance single entities give rise (look like) different 
particles/fields in different regimes

single mathematical/conceptual framework (thus same 
underlying principles) to treat all fields/interactions

QG necessarily unified theory in this sense

stronger condition; welcome if realized; not (logically) necessary; it implies first

1. quantize GR non-perturbatively
apply quantization methods to spacetime/geometry as a whole 

maintain fields, spacetime and geometry as basic dofs/entities 

UV theory (of metric + matter fields) is non-perturbative

2. extend QFT framework, also in perturbation theory, with new dofs and/or symmetries

extend perturbative QFT formalism with new dofs and symmetries 

quantize perturbatively ensuring UV consistency 

new dofs/symmetries and perturbative theory guide toward full non-perturbative formulation



early attempts



General strategy being followed at first (up to '90s): 


quantise GR, adapting and employing standard quantization techniques

different research directions, corresponding to different quantization techniques:


perturbative quantization, canonical quantization, covariant (path integral) quantization

all got stuck and died of starvation (or are maintained alive in a vegetative state) 

all achieved key insights



Bergmann, Dirac (1950-1959): canonical quantization of (constrained) gauge systems 

Arnowit, Deser, Misner (1961): Hamiltonian formulation of General Relativity, diffeomorphism constraints

Bergmann-Komar, Peres, DeWitt, Wheeler (1962-1967): canonical quantum gravity in ADM (metric) variables

�
hij(x),K

kl(x0)
 
/ �ik�jl�(x� x0) Hi(hij ,Kkl) = 0

H(hij ,Kkl) = 0
spatial 3-metric extrinsic curvature

invariance under spatial and temporal diffeomorphisms ~ 
invariance under change of foliation
(totally constrained theory: constraints encode whole dynamics)

 (hij) 2 H

cHi

✓
hij ,

�

�hkl

◆
 (hij) = 0 bH

✓
hij ,

�

�hkl

◆
 (hij) = 0

Wheeler, DeWitt, Teitelboim, Kuchar, Isham…. (1967-1987,  …): properties of “superspace of 3-geometries”, 
problem of time, scalar product on quantum states, quantum cosmology, lots of semiclassical analyses, …. 
too ill-defined at mathematical level to be solid approach to QG (beyond semi-classical or formal analyses)

quantum level:

Quantum Gravity: canonical quantization

choose foliation + identify phase space variables + impose "dynamics"



Misner, Wheeler,… (1957-): sum-over-histories formulation of QG, non-perturbative transition amplitudes (and scalar 
product) between QG states via sum over spacetime geometries

Hawking, Hartle, Teitelboim, Halliwell,… (1978-1991, …): Euclidean continuation, covariant (no-boundary) definition of 
“wave function of the universe”, relation to canonical theory, implementation of diffeomorphism symmetry, covariant 
quantum cosmology, lots of semi-classical applications, ……..                                 

 too ill-defined at mathematical level to be solid approach to QG (beyond semi-classical or formal analyses)

|hi 2 H H| i = 0 hh1|h2i =

Z

h1,h2

Dg e
i SM(g)

transition amplitude (or scalar product) 
from one 3-geometry to another

sum over spacetime 
4-geometries

probability amplitude for each 
“history” (4-geometry), depending 
on GR action (or modified one) 

Wheeler (1963): define it via discrete lattice (Regge) regularization —-> quantum Regge calculus 

S

S

M

2

1

g

h

h
2

1

Quantum Gravity: covariant path integral quantization



modern versions



Lattice Quantum Gravity

Quantum Regge calculus

(Causal) Dynamical Triangulations

Path integral of discrete geometries: 
fixed simplicial lattice, sum over edge length variables
continuum limit via lattice refinement

Path integral of discrete geometries: 
sum over all possible (causal) simplicial lattices (fixed 
topology), fixed edge lengths
continuum limit via sum over finer and finer lattices

Z = lim�!1

Z
dµ({Le}) e�S�

R ({Le})

Z = lima!0

X

�

µ(a,�) e�S�
R ({Le=a})

Basic idea: covariant quantisation of gravity as 
sum over “discrete geometries”

Continuum spacetime manifold replaced by 
simplicial lattice; metric data encoded in edge 
lengths 

Gravitational action is discretised version of 
Einstein-Hilbert action (Regge action)

T. Regge, R. Williams, H. Hamber, B. Dittrich, B. Bahr, ….

J. Ambjorn, J. Jurkiewicz, R. Loll, D. Benedetti, A. Goerlich, T. Budd, …



Loop Quantum Gravity (and spin foam models)

Canonical quantization of GR as gauge theory (connection variables):

A. Ashtekar, C. Rovelli, L. Smolin, T. Thiemann, J. Lewandowski, J. Pullin, H. Sahlmann, B. Dittrich, ……
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j �(x, y)choose foliation, identify phase space variables, impose dynamics + quantize



Loop Quantum Gravity (and spin foam models)

Canonical quantization of GR as gauge theory (connection variables):

A. Ashtekar, C. Rovelli, L. Smolin, T. Thiemann, J. Lewandowski, J. Pullin, H. Sahlmann, B. Dittrich, ……
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⇡
= L2
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Ā
�

4

where  
(�,J

(ab)
(ij) ,◆i)

(Gab
ij ) identifies a spin network functional labelled by a closed graph � with rep-

resentations J (ab)
(ij) associated to the di↵erent edges linking two vertices i and j, and intertwiners ◆i

associated to its vertices; gia (resp. gjb) (with a, b = 1, ..., d) are group elements being the argu-
ments of the field associated to the vertex i (resp. j), so that a pair of indices (a, b) denotes each
of the edges connecting two vertices i and j. The bosonic statistics implies a symmetrisation of
 with respect to permutations of the vertex labels. These observables act on the Fock vacuum
creating a spin network state associated to a graph �.

GFT as 2nd quantised reformulation of the LQG kinematics - We now discuss in more
detail in what sense GFT provides a 2nd quantised formalism for spin networks and how one can
link (a certain version of) canonical LQG and GFT directly, without passing through the spin foam
formulation, but providing in turn a clear link between the latter and canonical LQG. More details
can be found in [16] .

By ‘LQG kinematical Hilbert space’ we intend, here, a Hilbert space constructed out
of states associated to closed graphs and such that, for each graph �, we have H� =

L
2
⇣
G

E
/G

V
, dµ =

QE
e=1 dµ

Haar
e

⌘
(here G = SU(2)), where e are the links of the graph (E is their

total number), with a graph-based scalar product defined the Haar measure on each link µ
Haar
e .

The same Hilbert space can be represented also in the flux basis, via the non-commutative Fourier
transform [21, 22], in terms of functions of Lie algebra elements, that are the natural ‘momen-
tum’ variables for the classical LQG phase space on a given graph: [T ⇤

G]⇥E (before constraints).
The union for all graphs of such Hilbert spaces is, of course, not a Hilbert space. In the LQG
and spin foam literature, one finds di↵erent ways in which these graph-based Hilbert spaces can
be organised to define the Hilbert space of the theory. One is to simply consider the direct sum
over all possible graphs: H1

LQG = ��H� . Another, corresponding to the canonical construction
in the continuum, is to define appropriate equivalence classes for states over di↵erent graphs and
then take the projective limit of infinitely refined graphs: H2

LQG = lim�!1

[�H�

⇡
. Of course, the

two spaces are very di↵erent. The GFT Hilbert space can be understood as a di↵erent proposal
to define a Hilbert space out of a union of the graph-based Hilbert spaces, by ‘decomposing them
into elementary building blocks’.

The basic idea is to consider any wave function in H� , where � is a graph with V nodes, as an

element of HV = L
2
⇣
(G⇥d

/G)⇥V
, dµ =

QV
v=1

Qd
i=1 dµ

v
Haar,i

⌘
, satisfying special restrictions. The

latter space can be understood as the space of V spin network vertices, each possessing d outgoing
open links, and the extra restrictions enforce the gluing of suitable pairs of such open links to form
the links of the graph �. In group space, these extra restrictions are conditions of invariance under
the group action, which can be enforced through projectors. A function  � can be obtained from
a wavefunction �V 2 HV as

 �(G
ab
ij ) =

Y

[(ia),(jb)]

Z

G
d↵

ab
ij �V (. . . , gia ↵

ab
ij , . . . , gjb↵

ab
ij , . . .) =  �(gia(gjb)

�1) , (5)

with the same notation as in 4. This defines an embedding of elements of H� into HV . The same
construction can be phrased in the flux and spin representations. Moreover, the scalar product of
two quantum states in HV associated to the same graph agrees with the one computed in H� (i.e.
the scalar product in HV , once restricted by gluing conditions associated to the graph �, reduces
to the one in H�). This means that H� is embedded faithfully in HV . Obviously HV also contains
states associated to open graphs, that is graphs with some links ending up in 1-valent vertices, i.e.
with links of open spin network vertices not glued to any other.

The physical picture behind HV is that of a ‘many-atom’ Hilbert space, with each ‘quantum
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kinematical Hilbert space of quantum states:

G= SU(2)

spin networks can be understood as (generalised) 
piecewise-flat discrete geometries

underlying graphs are dual to (simplicial) lattices

Quantization of Systems with Constraints
Two dynamical models for full LQG

Outlook and Work in Progress

Hamiltonian formulation of GR
Relational Formalism: Observables & Evolution

Basis of Hkin

Spin network functions [Ashtekar, Isham, Lewandowski, Rovelli, Smolin ’90]
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Kristina Giesel Dynamics of LQG

quantum states of “space” are graphs labeled by algebraic (group-theoretic) data: spin networks

choose foliation, identify phase space variables, impose dynamics + quantize
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Geometric operators

in terms of spin operators                         at vertices:

Volume,  angle, and length similar.

jj

j

Geometric observables correspond to operators; some of them 
have discrete spectrum: discretization of quantum geometry! 
(Rovelli, Smolin, Ashtekar, Lewandowski, 1995-1997)

Canonical quantization of GR as gauge theory (connection variables):

A. Ashtekar, C. Rovelli, L. Smolin, T. Thiemann, J. Lewandowski, J. Pullin, H. Sahlmann, B. Dittrich, ……
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Geometric observables correspond to operators; some of them 
have discrete spectrum: discretization of quantum geometry! 
(Rovelli, Smolin, Ashtekar, Lewandowski, 1995-1997)
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Ā
�

4

where  
(�,J

(ab)
(ij) ,◆i)

(Gab
ij ) identifies a spin network functional labelled by a closed graph � with rep-

resentations J (ab)
(ij) associated to the di↵erent edges linking two vertices i and j, and intertwiners ◆i

associated to its vertices; gia (resp. gjb) (with a, b = 1, ..., d) are group elements being the argu-
ments of the field associated to the vertex i (resp. j), so that a pair of indices (a, b) denotes each
of the edges connecting two vertices i and j. The bosonic statistics implies a symmetrisation of
 with respect to permutations of the vertex labels. These observables act on the Fock vacuum
creating a spin network state associated to a graph �.

GFT as 2nd quantised reformulation of the LQG kinematics - We now discuss in more
detail in what sense GFT provides a 2nd quantised formalism for spin networks and how one can
link (a certain version of) canonical LQG and GFT directly, without passing through the spin foam
formulation, but providing in turn a clear link between the latter and canonical LQG. More details
can be found in [16] .

By ‘LQG kinematical Hilbert space’ we intend, here, a Hilbert space constructed out
of states associated to closed graphs and such that, for each graph �, we have H� =

L
2
⇣
G

E
/G

V
, dµ =

QE
e=1 dµ

Haar
e

⌘
(here G = SU(2)), where e are the links of the graph (E is their

total number), with a graph-based scalar product defined the Haar measure on each link µ
Haar
e .

The same Hilbert space can be represented also in the flux basis, via the non-commutative Fourier
transform [21, 22], in terms of functions of Lie algebra elements, that are the natural ‘momen-
tum’ variables for the classical LQG phase space on a given graph: [T ⇤

G]⇥E (before constraints).
The union for all graphs of such Hilbert spaces is, of course, not a Hilbert space. In the LQG
and spin foam literature, one finds di↵erent ways in which these graph-based Hilbert spaces can
be organised to define the Hilbert space of the theory. One is to simply consider the direct sum
over all possible graphs: H1

LQG = ��H� . Another, corresponding to the canonical construction
in the continuum, is to define appropriate equivalence classes for states over di↵erent graphs and
then take the projective limit of infinitely refined graphs: H2

LQG = lim�!1

[�H�

⇡
. Of course, the

two spaces are very di↵erent. The GFT Hilbert space can be understood as a di↵erent proposal
to define a Hilbert space out of a union of the graph-based Hilbert spaces, by ‘decomposing them
into elementary building blocks’.

The basic idea is to consider any wave function in H� , where � is a graph with V nodes, as an

element of HV = L
2
⇣
(G⇥d

/G)⇥V
, dµ =

QV
v=1

Qd
i=1 dµ

v
Haar,i

⌘
, satisfying special restrictions. The

latter space can be understood as the space of V spin network vertices, each possessing d outgoing
open links, and the extra restrictions enforce the gluing of suitable pairs of such open links to form
the links of the graph �. In group space, these extra restrictions are conditions of invariance under
the group action, which can be enforced through projectors. A function  � can be obtained from
a wavefunction �V 2 HV as

 �(G
ab
ij ) =

Y

[(ia),(jb)]

Z

G
d↵

ab
ij �V (. . . , gia ↵

ab
ij , . . . , gjb↵

ab
ij , . . .) =  �(gia(gjb)

�1) , (5)

with the same notation as in 4. This defines an embedding of elements of H� into HV . The same
construction can be phrased in the flux and spin representations. Moreover, the scalar product of
two quantum states in HV associated to the same graph agrees with the one computed in H� (i.e.
the scalar product in HV , once restricted by gluing conditions associated to the graph �, reduces
to the one in H�). This means that H� is embedded faithfully in HV . Obviously HV also contains
states associated to open graphs, that is graphs with some links ending up in 1-valent vertices, i.e.
with links of open spin network vertices not glued to any other.

The physical picture behind HV is that of a ‘many-atom’ Hilbert space, with each ‘quantum

4

where  
(�,J

(ab)
(ij) ,◆i)

(Gab
ij ) identifies a spin network functional labelled by a closed graph � with rep-

resentations J (ab)
(ij) associated to the di↵erent edges linking two vertices i and j, and intertwiners ◆i

associated to its vertices; gia (resp. gjb) (with a, b = 1, ..., d) are group elements being the argu-
ments of the field associated to the vertex i (resp. j), so that a pair of indices (a, b) denotes each
of the edges connecting two vertices i and j. The bosonic statistics implies a symmetrisation of
 with respect to permutations of the vertex labels. These observables act on the Fock vacuum
creating a spin network state associated to a graph �.

GFT as 2nd quantised reformulation of the LQG kinematics - We now discuss in more
detail in what sense GFT provides a 2nd quantised formalism for spin networks and how one can
link (a certain version of) canonical LQG and GFT directly, without passing through the spin foam
formulation, but providing in turn a clear link between the latter and canonical LQG. More details
can be found in [16] .

By ‘LQG kinematical Hilbert space’ we intend, here, a Hilbert space constructed out
of states associated to closed graphs and such that, for each graph �, we have H� =

L
2
⇣
G

E
/G

V
, dµ =

QE
e=1 dµ

Haar
e

⌘
(here G = SU(2)), where e are the links of the graph (E is their

total number), with a graph-based scalar product defined the Haar measure on each link µ
Haar
e .

The same Hilbert space can be represented also in the flux basis, via the non-commutative Fourier
transform [21, 22], in terms of functions of Lie algebra elements, that are the natural ‘momen-
tum’ variables for the classical LQG phase space on a given graph: [T ⇤

G]⇥E (before constraints).
The union for all graphs of such Hilbert spaces is, of course, not a Hilbert space. In the LQG
and spin foam literature, one finds di↵erent ways in which these graph-based Hilbert spaces can
be organised to define the Hilbert space of the theory. One is to simply consider the direct sum
over all possible graphs: H1

LQG = ��H� . Another, corresponding to the canonical construction
in the continuum, is to define appropriate equivalence classes for states over di↵erent graphs and
then take the projective limit of infinitely refined graphs: H2

LQG = lim�!1

[�H�

⇡
. Of course, the

two spaces are very di↵erent. The GFT Hilbert space can be understood as a di↵erent proposal
to define a Hilbert space out of a union of the graph-based Hilbert spaces, by ‘decomposing them
into elementary building blocks’.

The basic idea is to consider any wave function in H� , where � is a graph with V nodes, as an

element of HV = L
2
⇣
(G⇥d

/G)⇥V
, dµ =

QV
v=1

Qd
i=1 dµ

v
Haar,i

⌘
, satisfying special restrictions. The

latter space can be understood as the space of V spin network vertices, each possessing d outgoing
open links, and the extra restrictions enforce the gluing of suitable pairs of such open links to form
the links of the graph �. In group space, these extra restrictions are conditions of invariance under
the group action, which can be enforced through projectors. A function  � can be obtained from
a wavefunction �V 2 HV as

 �(G
ab
ij ) =

Y

[(ia),(jb)]

Z

G
d↵

ab
ij �V (. . . , gia ↵

ab
ij , . . . , gjb↵

ab
ij , . . .) =  �(gia(gjb)

�1) , (5)

with the same notation as in 4. This defines an embedding of elements of H� into HV . The same
construction can be phrased in the flux and spin representations. Moreover, the scalar product of
two quantum states in HV associated to the same graph agrees with the one computed in H� (i.e.
the scalar product in HV , once restricted by gluing conditions associated to the graph �, reduces
to the one in H�). This means that H� is embedded faithfully in HV . Obviously HV also contains
states associated to open graphs, that is graphs with some links ending up in 1-valent vertices, i.e.
with links of open spin network vertices not glued to any other.

The physical picture behind HV is that of a ‘many-atom’ Hilbert space, with each ‘quantum

kinematical Hilbert space of quantum states:

G= SU(2)

spin networks can be understood as (generalised) 
piecewise-flat discrete geometries

underlying graphs are dual to (simplicial) lattices

Quantization of Systems with Constraints
Two dynamical models for full LQG

Outlook and Work in Progress

Hamiltonian formulation of GR
Relational Formalism: Observables & Evolution

Basis of Hkin

Spin network functions [Ashtekar, Isham, Lewandowski, Rovelli, Smolin ’90]

j1

j2 j3

j4

j5

j6
j7

j8

j9

j10

j11

j12
j13

j14

j15

j16

j17

j18

j19

j20

j21

j22

j23
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quantum states of “space” are graphs labeled by algebraic (group-theoretic) data: spin networks

choose foliation, identify phase space variables, impose dynamics + quantize

complicated combinatorial+algebraic "dynamics" 
(action of Hamiltonian constraint):



“histories” (dynamical interaction processes) are also purely 
algebraic and combinatorial: spin foams

2-complex J bordered by the graphs of γ and γ′ respectively, a collection of spins {jf} associated
with faces f ∈ J and a collection of intertwiners {ιe} associated to edges e ∈ J . Both spins and
intertwiners of exterior faces and edges match the boundary values defined by the spin networks s
and s′ respectively. Spin foams F : s → s′ and F ′ : s′ → s′′ can be composed into FF ′ : s → s′′

by gluing together the two corresponding 2-complexes at s′. A spin foam model is an assignment
of amplitudes A[F ] which is consistent with this composition rule in the sense that

A[FF ′] = A[F ]A[F ′]. (74)

Transition amplitudes between spin network states are defined by

〈s, s′〉phys =
∑

F :s→s′

A[F ], (75)

where the notation anticipates the interpretation of such amplitudes as defining the physical scalar
product. The domain of the previous sum is left unspecified at this stage. We shall discuss this
question further in Section V. This last equation is the spin foam counterpart of equation (73).
This definition remains formal until we specify what the set of allowed spin foams in the sum are
and define the corresponding amplitudes.
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Figure 5: A typical path in a path integral version of loop quantum gravity is given by a series of
transitions through different spin-network states representing a state of 3-geometries. Nodes and
links in the spin network evolve into 1-dimensional edges and faces. New links are created and
spins are reassigned at vertexes (emphasized on the right). The ‘topological’ structure is provided
by the underlying 2-complex while the geometric degrees of freedom are encoded in the labeling of
its elements with irreducible representations and intertwiners.

The background-independent character of spin foams is manifest. The 2-complex can be
thought of as representing ‘space-time’ while the boundary graphs as representing ‘space’. They do
not carry any geometrical information in contrast with the standard concept of a lattice. Geometry
is encoded in the spin labelings which represent the degrees of freedom of the gravitational field.

In standard quantum mechanics the path integral is used to compute the matrix elements of the
evolution operator U(t). It provides in this way the solution for dynamics since for any kinemat-
ical state Ψ the state U(t)Ψ is a solution to Schrödinger’s equation. Analogously, in a generally
covariant theory the path integral provides a device for constructing solutions to the quantum
constraints. Transition amplitudes represent the matrix elements of the so-called generalized ‘pro-
jection’ operator P (i.e., 〈s, s′〉phys = 〈sP, s′〉 recall the general discussion of Sections 2.2) such
that PΨ is a physical state for any kinematical state Ψ. As in the case of the vector constraint
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spin networks/spin foams can be understood as 
(generalised) piecewise-flat discrete geometries

the underlying graphs and 2-complexes are dual 
to (simplicial) lattices

Loop Quantum Gravity (and spin foam models)

evolution of spin networks involves 
changes in combinatorial structure and in 

algebraic labels 

h �(j, i) | �0(j0, i0)i =
X

�|�,�0

w(�)
X

{J},{I}|j,j0,i,i0

A� (J, I) ⇡ ”
Z
Dg ei S(g) ”

purely algebraic and combinatorial 
“path integral for quantum gravity”

Lots of results on quantum geometry and 
mathematics of quantum gravitational field; 
inspiring models of quantum black holes and 
quantum cosmology

M. Reisenberger, C. Rovelli, J. Baez, J. Barrett, L. Crane, A. Perez, E. Livine,  DO, S. Speziale, ……



Group field theories

' : G⇥d ! CQuantum field theories over group G (enriching tensor models with group data)

for gravity models, G = local gauge group of gravity (e.g. Lorentz group)

(Boulatov, Ooguri, De Pietri, Freidel, Krasnov, Rovelli, Perez, DO, Livine, Baratin, ……)

generic quantum state: arbitrary collection of 
spin network vertices (including glued ones) 

or tetrahedra (including glued ones)
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QFT -of- spacetime, not -on- spacetime



Group field theories

' : G⇥d ! CQuantum field theories over group G (enriching tensor models with group data)

for gravity models, G = local gauge group of gravity (e.g. Lorentz group)

(Boulatov, Ooguri, De Pietri, Freidel, Krasnov, Rovelli, Perez, DO, Livine, Baratin, ……)

generic quantum state: arbitrary collection of 
spin network vertices (including glued ones) 

or tetrahedra (including glued ones)

Quantization of Systems with Constraints
Two dynamical models for full LQG

Outlook and Work in Progress

Hamiltonian formulation of GR
Relational Formalism: Observables & Evolution

Basis of Hkin

Spin network functions [Ashtekar, Isham, Lewandowski, Rovelli, Smolin ’90]

j1

j2 j3

j4

j5

j6
j7

j8

j9

j10

j11

j12
j13

j14

j15

j16

j17

j18

j19

j20

j21

j22

j23

Kristina Giesel Dynamics of LQG

single field “quantum”: spin network vertex 
or tetrahedron quantum states are 2nd quantised spin networks/simplices

S(',') =
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Z
[dgia]'(gi1)....'(ḡiD)V(gia, ḡiD) + c.c.

QFT -of- spacetime, not -on- spacetime



Feynman perturbative expansion around trivial vacuum
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X
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�N�

sym(�)
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Group field theories
(Boulatov, Ooguri, De Pietri, Freidel, Krasnov, Rovelli, Perez, DO, Livine, Baratin, ……)



Feynman perturbative expansion around trivial vacuum

Feynman diagrams (obtained by convoluting propagators with interaction kernels) =


= stranded diagrams dual to cellular complexes of arbitrary topology 


(simplicial case: simplicial complexes obtained by gluing d-simplices)
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equivalently:
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GFT as lattice quantum gravity:

dynamical triangulations + quantum Regge calculus

(Boulatov, Ooguri, De Pietri, Freidel, Krasnov, Rovelli, Perez, DO, Livine, Baratin, ……)



....and more……

non-commutative geometry

causal set theory

there are quite a few other quantum gravity approaches, with different goals 
and different levels of development

not going to discuss them here…..

algebras of functions (incl. coordinate functions) on spacetime are 
central object; they are turned into non-commutative algebras, 
thus “non-commutative spacetime and geometry”; 2 subdirections: 
Connes’ spectral triple (based on Dirac operator; possible route to 
unification) and “quantum spacetimes” (based on Hopf algebra 
symmetries, basis of much phenomenology); difficult to turn on 
dynamics of geometry and spacetime itself  

intrinsically discrete sub-structure for spacetime, given by 
fundamental causal relations between finite set of 
“events”, giving a “partially ordered, locally finite set”. 
quantum dynamics defined ideally by “sum-over-causets” 
weighted by quantum amplitude; continuum spacetime 
should emerge from this sum, as approximation

asymptotic safety, quantum graphity, twistor theory, ….



new dofs/symm
--> string theory

string excitations: particles of any spin/mass; 
incl. graviton =  quantum of gravitational field
consistent (around flat space) and finite 
perturbation theory in 10d  
background spacetime satisfies GR equations

extend fields/particles to strings/string vibration modes

need supersymmetry



new dofs/symm
--> string theory

string excitations: particles of any spin/mass; 
incl. graviton =  quantum of gravitational field
consistent (around flat space) and finite 
perturbation theory in 10d  
background spacetime satisfies GR equations

extend fields/particles to strings/string vibration modes

need supersymmetry

• need non-perturbative extension, including new dofs and symmetries, anyway

non-perturbative extension includes 
non-perturbative quantization of 
gravity/spacetime/geometry

need to make sense of it like in "quantum GR" approaches 

new dofs/symmetries may help



third option: 
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emergent spacetime, emergent gravity
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effective curved metric (from background fluid) and quantum matter 
fields (excitations over fluid) from non-geometric atomic theory 

(quantum liquids, optical systems, ordinary fluids, …)
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•    challenges to “localization” in semi-classical GR (& minimal length scenarios)    

•      spacetime singularities in GR

•      black hole thermodynamics

• Einstein’s equations as equation of state

Beyond Relativistic SpaceTime - hints of more radical 
disappearance of spacetime itself
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•      black hole thermodynamics

• Einstein’s equations as equation of state

Beyond Relativistic SpaceTime - hints of more radical 
disappearance of spacetime itself

breakdown of local continuum? fundamental discreteness of spacetime?  
is spacetime itself “emergent” from non-spatiotemporal, non-geometric, 

quantum building blocks (“atoms of space”)?
C. Wuetrich, 2017; DO, 2013; DO, 2018
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Beyond Relativistic SpaceTime - hints of more radical 
disappearance of spacetime itself

breakdown of local continuum? fundamental discreteness of spacetime?  
is spacetime itself “emergent” from non-spatiotemporal, non-geometric, 

quantum building blocks (“atoms of space”)?
C. Wuetrich, 2017; DO, 2013; DO, 2018

idea further supported by results from contemporary QG formalisms, which have identified candidate non-
spatiotemporal building blocks and/or further hints that spatiotemporal structures are not fundamental    

DO, 2017, 2018



third option: replace QFT and GR structures by "something else" - emergent spacetime and geometry

• not just emergent gravity; flat spacetime itself would be emergent, highly excited, collective state of "QG atoms"

• new dofs ("atoms of space", no spacetime, not "geometry + other") (and new "beyond quantum" framework)

is spacetime itself “emergent” from non-spatiotemporal, non-geometric, quantum building blocks 
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is spacetime itself “emergent” from non-spatiotemporal, non-geometric, quantum building blocks 
(“atoms of space”)?

quantum space as a (background-independent) quantum many-body system

extraction of spacetime and cosmology similar to typical problem in condensed matter theory 
(from atoms to macroscopic physics)
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third option: replace QFT and GR structures by "something else" - emergent spacetime and geometry

• not just emergent gravity; flat spacetime itself would be emergent, highly excited, collective state of "QG atoms"

• new dofs ("atoms of space", no spacetime, not "geometry + other") (and new "beyond quantum" framework)

true in several different QG approaches (in different ways)
e.g. 

discrete gravity, spin foam models

tensor models, group field theory

causal sets

....

is spacetime itself “emergent” from non-spatiotemporal, non-geometric, quantum building blocks 
(“atoms of space”)?

quantum space as a (background-independent) quantum many-body system

extraction of spacetime and cosmology similar to typical problem in condensed matter theory 
(from atoms to macroscopic physics)
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third option: replace QFT and GR structures by "something else" - emergent spacetime and geometry

• not just emergent gravity; flat spacetime itself would be emergent, highly excited, collective state of "QG atoms"

• new dofs ("atoms of space", no spacetime, not "geometry + other") (and new "beyond quantum" framework)

true in several different QG approaches (in different ways)
e.g. 

discrete gravity, spin foam models

tensor models, group field theory

causal sets

....

is spacetime itself “emergent” from non-spatiotemporal, non-geometric, quantum building blocks 
(“atoms of space”)?

• unification? which unification?

geometry and matter (probably together) are both collective description of  "something else"  

substance unification if "atoms of space" do not split into different kinds, separately originating different continuum fields

quantum space as a (background-independent) quantum many-body system

extraction of spacetime and cosmology similar to typical problem in condensed matter theory 
(from atoms to macroscopic physics)
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third option: replace QFT and GR structures by "something else" - emergent spacetime and geometry

• not just emergent gravity; flat spacetime itself would be emergent, highly excited, collective state of "QG atoms"

• new dofs ("atoms of space", no spacetime, not "geometry + other") (and new "beyond quantum" framework)

• it means abandoning (one or more) basic principles of GR and QFT: locality, unitarity, Lorentz, ...
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is spacetime itself “emergent” from non-spatiotemporal, non-geometric, quantum building blocks 
(“atoms of space”)?

• unification? which unification?

geometry and matter (probably together) are both collective description of  "something else"  

substance unification if "atoms of space" do not split into different kinds, separately originating different continuum fields

quantum space as a (background-independent) quantum many-body system

extraction of spacetime and cosmology similar to typical problem in condensed matter theory 
(from atoms to macroscopic physics)
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23 PM Daniele Faccio (Analogue gravity in photon fluids  
 
34 PM Emanuele Levi (Quantum Correlations and  noneq
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condensates and cosmolgy at the University of Nottingham. A
joint event between the School of Mathematical Sciences and the
School of Physics & Astronomy.

Orchard Hotel: accommodation on the University Park
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University Park: the workshop will take place at the University
of Nottingham. To download the campus map click here.
Workshop Venue: School of Physics & Astronomy.
Directions: For more information on how to reach the
University Park click here.
Workshop dinner Venue: The Riverbank bar&kitchen, for
more information click here.
Reception Venue: Bar at the Orchards Hotel (see first item on
list).
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in fact, also other strategies suggest emergent spacetime/geometry scenario

• canonical LQG --> piecewise-degenerate quantum geometries encoded in combinatorial/algebraic data

• lattice QG --> piecewise-flat quantum geometries

• string theory dualities --> non-spacetime based dofs for M-theory?

• AdS/CFT provides concrete example of "emergent gravity" + "emergent space"

(embedded) spin network states encode dofs of continuum 
connection/tetrad fields which are degenerate (identically vanishing) 
everywhere (in manifold) except on links of spin network graph

discrete gravity data on lattice are those of continuum but 
distributional (non-smooth) metrics which are identically flat 
inside simplices (curvature arise from gluing)

string dualities relate ST on spacetimes with different topology and dimension; 
suggest more fundamental description not based on spacetime at all

AdS bulk: curved spacetime of dimension d 
CFT: flat spacetime of dimension d-1

extra spatial direction "reconstructed" from quantum CFT dofs
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matrix models for 2d (Riemannian) QG
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abstract theory of (random) NxN matrices

Feynman diagrams ~ 2d discrete surfaces

LECTURE 1 LECTURE 2 LECTURE 3 LECTURE 4

MATRIX MODELS - FEYNMAN DIAGRAMS AND SIMPLICIAL COMPLEXES

building blocks for Feynman diagrams:
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diagrams made of: vertices of interaction, lines of propagation, faces (closed
loops of strands)
Feynman amplitudes: join vertices with propagators and sum over common
variables (indices) i⇒ ZΓ =

Q

f⊂Γ N = NFΓ
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simplicial intepretation:
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Γ≃ 2d simplicial complex∆ (triangulation)
≃ 2d discrete spacetime

• partition function

• continuum limit (large N, refined lattices, critical behaviour wrt coupling g) 2d Liouville QG

• purely combinatorial formulation of quantum dynamics

•  SD equations for matrix n-point functions ~ Wheeler-deWitt equations (from canonical quantization of 2d gravity)

Introduction
Tensor Group Field Theories (TGFT)

TGFT versus Other Approaches
Conclusion

2D Geometrogenesis

Figure: and its dual matrix realization as a ribbon graph.

−→Mab ↓

TrM3

“Emergent” 2D gravity: Taking the continuum limit, g → gc , the integral is
dominated by (planar) diagrams with infinite number of vertices with smaller
and smaller area ! phase transition to continuum 2D gravity (possibly coupled
to Liouville fields).

Vincent Rivasseau Tensor Group Field Theories
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group field theory

• generalization of matrix models to d>2 + 2nd quantized formulation of LQG : 
abstract theory of tensor fields enriched with group-theoretic data

• QFT of quantum simplices - Feynman diagrams = d>2 lattices - Feyman amplitudes = lattice gravity path integrals
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• for suitable "quantum geometric" models:

• consider fluid of quantum tetrahedra 
("universe as QG condensate") 

• mean field GFT condensate hydrodynamics ~ 
~ non-linear eqn for "wavefunction" on 
minisuperspace (space of homogenous geom) 

• obtain effective dynamics for universe volume 

Z
[dg0i] K̃(gi, g

0
i)�(g0i) + �

�Ṽ
�'(gi)

|'⌘� = 0

where Vj ⇠ j3/2`3Pl is the eigenvalue of the volume operator in canonical loop quantum
gravity acting on an equilateral (as defined in Sec. IVC) four-valent spin network node
in the representation j. (Clearly, it follows from the definition of equilateral spin network
nodes that Vj is the largest eigenvalue of the LQG volume operator possible for a node
with all ji = j.) Note that the scaling mentioned here is approximate, and for a detailed
analysis it would be necessary to explicitly calculate Vj for each j. However, this will not
be necessary here.

A technical comment is also in order here. The LQG volume operator depends on the
Barbero-Immirzi parameter �, which only appears in spin foam models after the simplicity
constraints have been imposed. In the GFT models based on spin foam models, the sim-
plicity constraints are imposed in the interaction term in the GFT action, whose e↵ect in
the equations of motion has been assumed to be negligible. However, an operator in GFT
can only be interpreted as a geometric operator after simplicity has been imposed. This
is why it is important to remember that we are not ignoring the e↵ect of the interaction
term but instead we are considering the case where the contribution of the interaction
term to the equations of motion is negligible compared to that of the kinetic terms. The
interaction term is nonetheless present and imposes simplicity, but its contribution to the
equations of motion of the condensate wave function is negligible and can be ignored.

Now, given (73), and using the notation of Sec. VA,
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Both V 0 and V 00 depend also on the wj interaction term in the equations of motion, but
the contribution from the interaction term is assumed to be subdominant in the Gross-
Pitaevskii approximation and therefore we neglect these terms here.

From the equations above it follows immediately that the generalised Friedmann equa-
tions in terms of the relational time � are given by
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where Vj ⇠ j3/2`3Pl is the eigenvalue of the volume operator in canonical loop quantum
gravity acting on an equilateral (as defined in Sec. IVC) four-valent spin network node
in the representation j. (Clearly, it follows from the definition of equilateral spin network
nodes that Vj is the largest eigenvalue of the LQG volume operator possible for a node
with all ji = j.) Note that the scaling mentioned here is approximate, and for a detailed
analysis it would be necessary to explicitly calculate Vj for each j. However, this will not
be necessary here.

A technical comment is also in order here. The LQG volume operator depends on the
Barbero-Immirzi parameter �, which only appears in spin foam models after the simplicity
constraints have been imposed. In the GFT models based on spin foam models, the sim-
plicity constraints are imposed in the interaction term in the GFT action, whose e↵ect in
the equations of motion has been assumed to be negligible. However, an operator in GFT
can only be interpreted as a geometric operator after simplicity has been imposed. This
is why it is important to remember that we are not ignoring the e↵ect of the interaction
term but instead we are considering the case where the contribution of the interaction
term to the equations of motion is negligible compared to that of the kinetic terms. The
interaction term is nonetheless present and imposes simplicity, but its contribution to the
equations of motion of the condensate wave function is negligible and can be ignored.
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Both V 0 and V 00 depend also on the wj interaction term in the equations of motion, but
the contribution from the interaction term is assumed to be subdominant in the Gross-
Pitaevskii approximation and therefore we neglect these terms here.

From the equations above it follows immediately that the generalised Friedmann equa-
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• semiclassical Friedmann eqn 
at large volumes/late times

• quantum bounce replacing 
big bang singularity

examples of (partial) realizations of emergent spacetime scenario

group field theory

• generalization of matrix models to d>2 + 2nd quantized formulation of LQG : 
abstract theory of tensor fields enriched with group-theoretic data

• QFT of quantum simplices - Feynman diagrams = d>2 lattices - Feyman amplitudes = lattice gravity path integrals
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Quantum Gravity: 
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Quantum Gravity (~ quantized spacetime/geometry/gravitational field):

general structure what would it mean to have a quantum theory of geometry/spacetime?

• a Hilbert space of quantum states

• quantum geometric observables 
(operators acting on quantum states)

• a quantum dynamics

• a classical limit/approximation

| spatial geometry > =  


= | spatial distances, curvature, volumes, ... >

<latexit sha1_base64="MsLr+ftjWBJ9cb7QQAMVWI0WnY0=">AAACE3icbVDLSgMxFL1TX7W+qi7dBIsgImVGFN0IRTddVrAP6AxDJk3b2ExmSDJCGfsPbvwVNy4UcevGnX9jpu1CWw8kHM65l+ScIOZMadv+tnILi0vLK/nVwtr6xuZWcXunoaJEElonEY9kK8CKciZoXTPNaSuWFIcBp81gcJ35zXsqFYvErR7G1AtxT7AuI1gbyS8euSHWfYJ5Wh0h9xi5gpn7AfX9lN0ZRWLR4zRzLv1iyS7bY6B54kxJCaao+cUvtxORJKRCE46Vajt2rL0US80Ip6OCmygaYzLAPdo2VOCQKi8dZxqhA6N0UDeS5giNxurvjRSHSg3DwExmCdSsl4n/ee1Edy+8lIk40VSQyUPdhCMdoawg1GGSEs2HhmAimfkrIn0sMdGmxoIpwZmNPE8aJ2XnrGzfnJYqV9M68rAH+3AIDpxDBapQgzoQeIRneIU368l6sd6tj8lozpru7MIfWJ8/aNiclA==</latexit>

H 3 |hiji =

observable geometric quantities, e.g. 
spatial distances, volumes, curvature, ....

constraint operator acting on states and imposing 
that they correspond to admissible "spacetimes" 
or "spacetime geometries" (still not classical)

or
sum-over-histories allowing calculation 
of "transitions between geometries"
"histories of space" = "spacetimes"
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counterpart of 
Schroedinger eqnno time!
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counterpart of 
Feynman's path integral

to recover GR equations and 
classical gravitational field "emergence of classical spacetime"

notice: classical limit is subtle even in standard QM

also obtained  as coarse-grained approximation in radical "emergent spacetime" QG
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Space, Time, Geometry “fluctuate” and evolve probabilistically


quantum fluctuations of all geometric quantities (lengths, areas, time 
intervals, volumes, ….) 


quantum fluctuations (no sharp meaning) for locality, events, ...
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quantum fluctuations of causality

E. Castro-Ruiz, F. Giacomini, C. Brukner, ’15, ‘17
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quantum fluctuations of causality

E. Castro-Ruiz, F. Giacomini, C. Brukner, ’15, ‘17

also:


geometric quantities (distances, time intervals, volumes, ….) may be discretized

minimal length, volume, ..? what is left of continuum intuition?
C. Rovelli, L. Smolin, 1995

Quantum Gravity (~ quantized spacetime/geometry/gravitational field):

general structure what would it mean to have a quantum theory of geometry/spacetime?

also obtained  as coarse-grained approximation in radical "emergent spacetime" QG
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further issues and possibilities open up in "emergent spacetime" scenarios

besides quantum effects of spacetime, we will have collective effects of "spacetime constituents"

which may manifest in new (or newly explained) spacetime features

main conceptual point:

the Bronstein cube …..

corresponds to traditional 
view of QG = quantum GR

c

c

c

h

h

h

G

G G

N

N

N

N

but if fundamental d.o.f.s are not smooth spacetimes (geometries) ……

the Bronstein hypercube of Quantum Gravity

N-direction is where emergent behaviour takes place: 
“More is different”

adding a new direction to our understanding of the world….
…. understanding the physics of many QG d.o.f.s





key issues of QG formalisms

identify (candidate) fundamental dofs 

define and control their quantum dynamics 

control their semi-classical approximation and spacetime interpretation

if fundamental entities are not directly spatiotemporal 

control their collective dynamics  

control their continuum approximation showing how spacetime emerges  

(including phase transitions, emergent physics beyond EFT, etc)

but is it physics?



• good for QG phenomenology (the more radical the change, the more room for new physics)

QG radically challenges the very foundations of our physical understanding of the world

plethora of possible QG effects:

• purpose-built phenomenological models/scenarios trying to incorporate QG ideas

• modelling of extreme physical systems inspired by specific QG approaches

• altogether new QG ideas implemented in toy models, waiting for realization in full QG formalisms

• minimal length scenarios 

• modified uncertainty principle 

• symmetry violation/deformation

• regular black holes 

• exotic compact objects 

• QG signatures in CMB spectrum

• non-local gravity 

• dissipative effects of spacetime atoms 

• modified gravity as collective phenomenon



• good for QG phenomenology (the more radical the change, the more room for new physics)

QG radically challenges the very foundations of our physical understanding of the world

• danger of EFT intuition: Planck scale, separation of scales, which principles do we rely on?

in principle, Quantum Gravity from cosmological scales to Planck scale

caution: very notion of Planck scale as (only) relevant scale of QG effects results from current physics and EFT 
intuition, tested only up to very different scales and based on concepts that we do not expect to be fundamental

plethora of possible QG effects:

• purpose-built phenomenological models/scenarios trying to incorporate QG ideas

• modelling of extreme physical systems inspired by specific QG approaches

• altogether new QG ideas implemented in toy models, waiting for realization in full QG formalisms

• minimal length scenarios 

• modified uncertainty principle 

• symmetry violation/deformation

• regular black holes 

• exotic compact objects 

• QG signatures in CMB spectrum

• non-local gravity 

• dissipative effects of spacetime atoms 

• modified gravity as collective phenomenon



What could be the relevant scale for QG effects?
based on current theories, i.e. GR and QFT, and on straightforward QG = quantum GR: Planck scale

~ where both GR and QFT are relevant

in principle, Quantum Gravity from cosmological scales to Planck scale

cautionary remark: this is on the basis of current physics, tested only up to very different scales 
(compared to Planck scale) and based on concepts that may not be valid beyond such scales



e.g. : dark matter (galactic dynamics), dark energy (accelerated cosmological expansion) - either 95% of the 
universe is not known, or we do not understand gravity at large scales

e.g. cosmological constant as possible large scale manifestation of microscopic (quantum gravity) physics

if spacetime (with its continuum structures, metric, matter fields, topology) is emergent,

even large scale features of gravitational dynamics can (and maybe should) have their 
origin in more fundamental (“atomic”) theory

cannot trust most notions on which effective quantum field theory is based (locality, separation of scales, etc)



QG effects (potentially) testable
despite possible suppression by Planck scale

Main theoretical problem:  


most testable effects obtained within simplified models and phenomenological frameworks


very weak link with fundamental theory


no real control over approximations and assumptions

pressing issue: 
connect simplified models with fundamental formalisms
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QG requires abandoning/generalizing (one or more) basic principles of QM and QFT

probably worse in "emergent spacetime" scenarios

locality, unitarity, local Lorentz symmetry?

Quantum Gravity meets Quantum Foundations

even if we focus mostly on spacetime (gravitational) aspects of QG, our understanding of QM needs to be re-assessed 

topics in quantum foundations of interest for QG

indefinite causality

quantum reference frames

generalised probability theories

beyond unitary quantum evolution

(see later discussion on relational observables in QG)

two directions: 

• how to generalize QM in presence of key (expected) aspects of QG? 

• which generalization of QM give best framework for QG?





Quantum Gravity: 

diffeomorphism invariance, 
background independence, 

spacetime observables



• diffeo invariance and background independence 

• "problem of time" and QG observables

key aspect of classical GR, that we expect to be maintained in QG
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Diff (M) =
�
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• the diffeomorphism group acts on geometric objects defined on the manifold, i.e. all tensor fields (metric + matter)

<latexit sha1_base64="DNsQcXnlyNKUfL+5EnrkoPU5SLo="></latexit>

'0 ⌘ f · ' = D(f⇤) · ' · f�1

irrep for
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• dynamics is specified by equations of motion, for given background structures
<latexit sha1_base64="oDixX4exG/EpCO+65figYZV65XA="></latexit>

F [{'} , ⌃] = 0
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simply requirement that eqns are geometrically well-defined - any theory can be written as such
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⇤⌘ � = 0 ⇤⌘ = ⌘ab ra rb
not diffeomorphism invariant (flat 
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in GR/QG, only diffeo-invariant quantities are physical 
(thus encode spacetime properties)
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gµ⌫(x) Aµ(x) '(x)fields themselves (as functions of manifold points) are unphysical objects
GR, as usually formulated, is written in a (useful) highly redundant  language

physical notions of events, space and time will have to be defined in terms of diffeomorphism-invariant observables, 
constructed using dynamical fields, and compatible with dynamical equations of the theory 
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scalars

however, a priori not particularly interesting or useful:

may diverge (e.g., ) 
no local information (averages over all of spacetime) 
definition indep. of dynamics  kinematical diff-inv observables, apply to any diff-inv. gravity theory 

O(x) = R2(x)

⇒

want: observables that encode 
local information (phenomenology) 
specific dynamics (e.g., GR)

very hard in general:  
localization in diff-inv context  relational: localize dynamical  
DoFs relative to one another  
generally only defined on solutions  need to solve dynamics

⇒
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Ĉa |ψphys⟩ = 0ĈH |ψphys⟩ = 0,

For purpose of this talk: can be agnostic about whether result fundamental or effective QG theory

Implement (Wheeler-DeWitt equation)

 appears “frozen in time”,⇒ |ψphys⟩

often called “timeless”

but similarly “constant in space” 

“spaceless”?

(  compact)Σ

But here: quantization OF, not in spacetime

  background time- and spaceless, but not internally time- or spaceless⇒ |ψphys⟩

Localization in space and time (and dynamics) relational (later:  is dynamical-reference-system- 
neutral description of physics)

|ψphys⟩

Canonical quantization and problem of time

relational strategy
Relational Dirac observables for reparametrization-inv. systems

C

gauge orbits

T = ⌧

T

Evolve observable f relative to time function T

gauge-inv. evol. rel. to T 
= 

“scanning with T=const surfaces through 
constraint surface”

What is value of f when clock T reads ⌧?

Ff,T (⌧) = ↵s
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· f

���
↵

s

CH
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⇢
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Dittrich ’04; ‘05

{CH , Ff,T (⌧)} ⇡ 0reparametrization invariant

gauge-invariant extension of gauge-fixed quantity

Rovelli, Dittrich, Ashtekar, Bojowald, Gambini, Giddings, Giesel, Kaminiski, Lewandowski, Marolf, Pullin, 
Thiemann, Chataignier, PH, Husain, Pons, Salisbury, Singh, Sunderymeyer, Tambornino, Tsobanjan, … Single Hamiltonian constraint 

(e.g., homogeneous cosmology)
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Ĉa |ψphys⟩ = 0ĈH |ψphys⟩ = 0,

For purpose of this talk: can be agnostic about whether result fundamental or effective QG theory

Implement (Wheeler-DeWitt equation)

 appears “frozen in time”,⇒ |ψphys⟩

often called “timeless”

but similarly “constant in space” 

“spaceless”?

(  compact)Σ

But here: quantization OF, not in spacetime

  background time- and spaceless, but not internally time- or spaceless⇒ |ψphys⟩

Localization in space and time (and dynamics) relational (later:  is dynamical-reference-system- 
neutral description of physics)

|ψphys⟩

Canonical quantization and problem of time

relational strategy
Relational Dirac observables for reparametrization-inv. systems

C

gauge orbits

T = ⌧

T

Evolve observable f relative to time function T

gauge-inv. evol. rel. to T 
= 

“scanning with T=const surfaces through 
constraint surface”

What is value of f when clock T reads ⌧?

Ff,T (⌧) = ↵s

CH
· f

���
↵

s

CH
·T=⌧

⇡
1X

n=0

(⌧ � T )n

n!

⇢
f,

CH

{T,CH}

�

n

Dittrich ’04; ‘05

{CH , Ff,T (⌧)} ⇡ 0reparametrization invariant

gauge-invariant extension of gauge-fixed quantity

Rovelli, Dittrich, Ashtekar, Bojowald, Gambini, Giddings, Giesel, Kaminiski, Lewandowski, Marolf, Pullin, 
Thiemann, Chataignier, PH, Husain, Pons, Salisbury, Singh, Sunderymeyer, Tambornino, Tsobanjan, … Single Hamiltonian constraint 

(e.g., homogeneous cosmology)
Relational observables: “functions on reference fields”

Rovelli ‘90s+     [related ideas DeWitt ‘60s; Bargmann & Komar 90’s]

All measurements in real world relational: 

Premise: no external reference, all reference systems/frames are internal and physical
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what is a reference system?  
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(want to parametrize orbits with dynamical reference DoFs)

 reference DoFs are gauge DoFs⇒

identify some dynamical fields as clock/rods and 
use their values to label evolution/localization of 
other dynamical fields

How do we describe physics relative to 
dynamical reference systems?

reduction to coordinate frames: idealized clock/rods behaving like (global) test fields

<latexit sha1_base64="K3Ab1cT94xD5/Ph9f7yTnNLFuOE=">AAACGHicbZC7TsMwFIYdrqXcAowsFhVSWUqCQDAWWBiLRC9SE0WO67ZWHSf1paKK+hgsvAoLAwixduNtcNsMpeWXLP3+zjmyzx8mjErlOD/Wyura+sZmbiu/vbO7t28fHNZkrAUmVRyzWDRCJAmjnFQVVYw0EkFQFDJSD3v3k3p9QISkMX9Sw4T4Eepw2qYYKYMC+7wTpF6kPa5Hxecz6PX7GrXgbWDY3N0bIJF0qSGBXXBKzlRw2biZKYBMlcAee60Y64hwhRmSsuk6ifJTJBTFjIzynpYkQbiHOqRpLEcRkX46XWwETw1pwXYszOEKTun8RIoiKYdRaDojpLpysTaB/9WaWrVv/JTyRCvC8eyhtmZQxXCSEmxRQbBiQ2MQFtT8FeIuEggrk2XehOAurrxsahcl96rkPF4WyndZHDlwDE5AEbjgGpTBA6iAKsDgBbyBD/BpvVrv1pf1PWtdsbKZI/BH1vgXVU+fTw==</latexit>

gµ⌫(x) Aµ(x) '(x)relational perspective: physics is in the relations between dynamical fields

(complete, Dirac) observables = correlations on superspace (space of fields)



what are -local- diffeo-invariant observables, those with a spacetime interpretation?

Ĉa |ψphys⟩ = 0ĈH |ψphys⟩ = 0,

For purpose of this talk: can be agnostic about whether result fundamental or effective QG theory

Implement (Wheeler-DeWitt equation)

 appears “frozen in time”,⇒ |ψphys⟩

often called “timeless”

but similarly “constant in space” 

“spaceless”?

(  compact)Σ

But here: quantization OF, not in spacetime

  background time- and spaceless, but not internally time- or spaceless⇒ |ψphys⟩

Localization in space and time (and dynamics) relational (later:  is dynamical-reference-system- 
neutral description of physics)

|ψphys⟩

Canonical quantization and problem of time

relational strategy
Relational Dirac observables for reparametrization-inv. systems

C

gauge orbits

T = ⌧

T

Evolve observable f relative to time function T

gauge-inv. evol. rel. to T 
= 

“scanning with T=const surfaces through 
constraint surface”

What is value of f when clock T reads ⌧?

Ff,T (⌧) = ↵s

CH
· f

���
↵

s

CH
·T=⌧

⇡
1X

n=0

(⌧ � T )n

n!

⇢
f,

CH

{T,CH}

�

n

Dittrich ’04; ‘05

{CH , Ff,T (⌧)} ⇡ 0reparametrization invariant

gauge-invariant extension of gauge-fixed quantity

Rovelli, Dittrich, Ashtekar, Bojowald, Gambini, Giddings, Giesel, Kaminiski, Lewandowski, Marolf, Pullin, 
Thiemann, Chataignier, PH, Husain, Pons, Salisbury, Singh, Sunderymeyer, Tambornino, Tsobanjan, … Single Hamiltonian constraint 

(e.g., homogeneous cosmology)
Relational observables: “functions on reference fields”

Rovelli ‘90s+     [related ideas DeWitt ‘60s; Bargmann & Komar 90’s]

All measurements in real world relational: 

Premise: no external reference, all reference systems/frames are internal and physical

How do we describe physics relative to dynamical reference systems?

)

what is a reference system?  
As non-invariant/asymmetric under gauge symmetries as possible  
(invariants worst possible reference systems)

As many DoFs as there are indep. gauge directions  
(want to parametrize orbits with dynamical reference DoFs)

 reference DoFs are gauge DoFs⇒

correlations on superspace (space of fields)

Relational observables: “functions on reference fields”
Rovelli ‘90s+     [related ideas DeWitt ‘60s; Bargmann & Komar 90’s]

All measurements in real world relational: 

Premise: no external reference, all reference systems/frames are internal and physical

How do we describe physics relative to dynamical reference systems?

)

what is a reference system?  
As non-invariant/asymmetric under gauge symmetries as possible  
(invariants worst possible reference systems)

As many DoFs as there are indep. gauge directions  
(want to parametrize orbits with dynamical reference DoFs)

 reference DoFs are gauge DoFs⇒

identify some dynamical fields as clock/rods and 
use their values to label evolution/localization of 
other dynamical fields

How do we describe physics relative to 
dynamical reference systems?

reduction to coordinate frames: idealized clock/rods behaving like (global) test fields

<latexit sha1_base64="K3Ab1cT94xD5/Ph9f7yTnNLFuOE=">AAACGHicbZC7TsMwFIYdrqXcAowsFhVSWUqCQDAWWBiLRC9SE0WO67ZWHSf1paKK+hgsvAoLAwixduNtcNsMpeWXLP3+zjmyzx8mjErlOD/Wyura+sZmbiu/vbO7t28fHNZkrAUmVRyzWDRCJAmjnFQVVYw0EkFQFDJSD3v3k3p9QISkMX9Sw4T4Eepw2qYYKYMC+7wTpF6kPa5Hxecz6PX7GrXgbWDY3N0bIJF0qSGBXXBKzlRw2biZKYBMlcAee60Y64hwhRmSsuk6ifJTJBTFjIzynpYkQbiHOqRpLEcRkX46XWwETw1pwXYszOEKTun8RIoiKYdRaDojpLpysTaB/9WaWrVv/JTyRCvC8eyhtmZQxXCSEmxRQbBiQ2MQFtT8FeIuEggrk2XehOAurrxsahcl96rkPF4WyndZHDlwDE5AEbjgGpTBA6iAKsDgBbyBD/BpvVrv1pf1PWtdsbKZI/BH1vgXVU+fTw==</latexit>

gµ⌫(x) Aµ(x) '(x)relational perspective: physics is in the relations between dynamical fields

(complete, Dirac) observables = correlations on superspace (space of fields)

very difficult to define and compute such observables
<latexit sha1_base64="fct14ydelborRO7sae44PKQFX9Q=">AAACG3icbVDLSgMxFM34rPU16tJNsAgtSJkpRV0W3bisYh/QDuVOmrahmQdJplqG/ocbf8WNC0VcCS78GzPtINp6IHByzrkk97ghZ1JZ1pextLyyurae2chubm3v7Jp7+3UZRILQGgl4IJouSMqZT2uKKU6boaDguZw23OFl4jdGVEgW+LdqHFLHg77PeoyA0lLHLN3k+/n7QgGf4PYIRDhgHdB33BasP1AgRHCHk8iPWSh0zJxVtKbAi8ROSQ6lqHbMj3Y3IJFHfUU4SNmyrVA5MQjFCKeTbDuSNAQyhD5taeqDR6UTT3eb4GOtdHEvEPr4Ck/V3xMxeFKOPVcnPVADOe8l4n9eK1K9cydmfhgp6pPZQ72IYxXgpCjcZYISxceaABFM/xWTAQggSteZ1SXY8ysvknqpaJ8Wy9flXOUirSODDtERyiMbnaEKukJVVEMEPaAn9IJejUfj2Xgz3mfRJSOdOUB/YHx+A3AGnzw=</latexit>

R(g(x)),'a(x) ! R(g('a))example:

no known formulation of GR purely in terms of diffeomorphism invariant quantities



<latexit sha1_base64="K3Ab1cT94xD5/Ph9f7yTnNLFuOE=">AAACGHicbZC7TsMwFIYdrqXcAowsFhVSWUqCQDAWWBiLRC9SE0WO67ZWHSf1paKK+hgsvAoLAwixduNtcNsMpeWXLP3+zjmyzx8mjErlOD/Wyura+sZmbiu/vbO7t28fHNZkrAUmVRyzWDRCJAmjnFQVVYw0EkFQFDJSD3v3k3p9QISkMX9Sw4T4Eepw2qYYKYMC+7wTpF6kPa5Hxecz6PX7GrXgbWDY3N0bIJF0qSGBXXBKzlRw2biZKYBMlcAee60Y64hwhRmSsuk6ifJTJBTFjIzynpYkQbiHOqRpLEcRkX46XWwETw1pwXYszOEKTun8RIoiKYdRaDojpLpysTaB/9WaWrVv/JTyRCvC8eyhtmZQxXCSEmxRQbBiQ2MQFtT8FeIuEggrk2XehOAurrxsahcl96rkPF4WyndZHDlwDE5AEbjgGpTBA6iAKsDgBbyBD/BpvVrv1pf1PWtdsbKZI/BH1vgXVU+fTw==</latexit>

gµ⌫(x) Aµ(x) '(x)relational perspective: physics is in the relations between dynamical fields

(complete, Dirac) observables = correlations on superspace (space of fields)



simplest example: parametrized pendulum

classical single 1d pendulum

physical quantities: (value of some clock)pendulum position as function of physical time
<latexit sha1_base64="3Kr5mmj+pPS3xtCA2+jUCVrAE8I=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUaPTLFbfqzkFWiZeTCuSo98tfvUHM0gilYYJq3fXcxPgZVYYzgdNSL9WYUDamQ+xaKmmE2s/mh07JmVUGJIyVLWnIXP09kdFI60kU2M6ImpFe9mbif143NeGNn3GZpAYlWywKU0FMTGZfkwFXyIyYWEKZ4vZWwkZUUWZsNiUbgrf88ippXVS9q6rbuKzUbvM4inACp3AOHlxDDe6hDk1ggPAMr/DmPDovzrvzsWgtOPnMMfyB8/kDrG+M2Q==</latexit>

Q
<latexit sha1_base64="euZFEpH9/Bzjb/S+jpKjq4ZTYL4=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahXsquKHosevHYQr+gXUo2zbahSXZJskJZ+he8eFDEq3/Im//GbLsHbX0w8Hhvhpl5QcyZNq777RQ2Nre2d4q7pb39g8Oj8vFJR0eJIrRNIh6pXoA15UzStmGG016sKBYBp91g+pD53SeqNItky8xi6gs8lixkBJtMalZbl8Nyxa25C6B14uWkAjkaw/LXYBSRRFBpCMda9z03Nn6KlWGE03lpkGgaYzLFY9q3VGJBtZ8ubp2jC6uMUBgpW9Kghfp7IsVC65kIbKfAZqJXvUz8z+snJrzzUybjxFBJlovChCMToexxNGKKEsNnlmCimL0VkQlWmBgbT8mG4K2+vE46VzXvpuY2ryv1+zyOIpzBOVTBg1uowyM0oA0EJvAMr/DmCOfFeXc+lq0FJ585hT9wPn8AFuqNnA==</latexit>

Q(T )=

dynamics:
<latexit sha1_base64="bUc0bajg6E7loorpjmTUWJpJ2H8=">AAACDHicbVDLSgMxFM34rPVVdekmWAQXY5kpim6EohuXLfQFzbRkMpk2NPMgyQhlmA9w46+4caGIWz/AnX9j2s5CWw8EDuecy809bsyZVJb1baysrq1vbBa2its7u3v7pYPDtowSQWiLRDwSXRdLyllIW4opTruxoDhwOe2447up33mgQrIobKpJTJ0AD0PmM4KVlgalMvIFJqnXr8JGlnrNfjVD5g0yz5GJooAOMTIbOmVVrBngMrFzUgY56oPSF/IikgQ0VIRjKXu2FSsnxUIxwmlWRImkMSZjPKQ9TUMcUOmks2MyeKoVD/qR0C9UcKb+nkhxIOUkcHUywGokF72p+J/XS5R/7aQsjBNFQzJf5CccqghOm4EeE5QoPtEEE8H0XyEZYd2O0v0VdQn24snLpF2t2JcVq3FRrt3mdRTAMTgBZ8AGV6AG7kEdtAABj+AZvII348l4Md6Nj3l0xchnjsAfGJ8/VyaZ4g==</latexit>

d2Q

dT 2
= �!Q

<latexit sha1_base64="z/N2VY7ZbsO3oFSdGznN4SWp038=">AAACGnicbVDLSgNBEJz1bXxFPXoZDELEJeyKohfBx8WjQmICmRBmJ73J4OzsMtMrhOB3ePFXvHhQxJt48W+cxBx8FTQUVd10d0WZkhaD4MObmJyanpmdmy8sLC4trxRX165smhsBNZGq1DQibkFJDTWUqKCRGeBJpKAeXZ8N/foNGCtTXcV+Bq2Ed7WMpeDopHYxvCxXt5l/xPwT5jMrNVMQY5myNIEuZ36V+TvOyHqSMiO7PdxuF0tBJRiB/iXhmJTIGBft4hvrpCJPQKNQ3NpmGGTYGnCDUii4LbDcQsbFNe9C01HNE7Ctwei1W7rllA6NU+NKIx2p3ycGPLG2n0SuM+HYs7+9ofif18wxPmwNpM5yBC2+FsW5opjSYU60Iw0IVH1HuDDS3UpFjxsu0KVZcCGEv1/+S652K+F+JbjcKx2fjuOYIxtkk5RJSA7IMTknF6RGBLkjD+SJPHv33qP34r1+tU5445l18gPe+ycb3Z52</latexit>

Q(T ) = A sin (! T + �)general solution:

true physical system is pendulum + clock physics is in the relation Q(T)

Q and T can be measured (partial observables); what can be predicted is only Q(T) (complete observable)

<latexit sha1_base64="K3Ab1cT94xD5/Ph9f7yTnNLFuOE=">AAACGHicbZC7TsMwFIYdrqXcAowsFhVSWUqCQDAWWBiLRC9SE0WO67ZWHSf1paKK+hgsvAoLAwixduNtcNsMpeWXLP3+zjmyzx8mjErlOD/Wyura+sZmbiu/vbO7t28fHNZkrAUmVRyzWDRCJAmjnFQVVYw0EkFQFDJSD3v3k3p9QISkMX9Sw4T4Eepw2qYYKYMC+7wTpF6kPa5Hxecz6PX7GrXgbWDY3N0bIJF0qSGBXXBKzlRw2biZKYBMlcAee60Y64hwhRmSsuk6ifJTJBTFjIzynpYkQbiHOqRpLEcRkX46XWwETw1pwXYszOEKTun8RIoiKYdRaDojpLpysTaB/9WaWrVv/JTyRCvC8eyhtmZQxXCSEmxRQbBiQ2MQFtT8FeIuEggrk2XehOAurrxsahcl96rkPF4WyndZHDlwDE5AEbjgGpTBA6iAKsDgBbyBD/BpvVrv1pf1PWtdsbKZI/BH1vgXVU+fTw==</latexit>

gµ⌫(x) Aµ(x) '(x)relational perspective: physics is in the relations between dynamical fields

(complete, Dirac) observables = correlations on superspace (space of fields)



simplest example: parametrized pendulum

classical single 1d pendulum

physical quantities: (value of some clock)pendulum position as function of physical time
<latexit sha1_base64="3Kr5mmj+pPS3xtCA2+jUCVrAE8I=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUaPTLFbfqzkFWiZeTCuSo98tfvUHM0gilYYJq3fXcxPgZVYYzgdNSL9WYUDamQ+xaKmmE2s/mh07JmVUGJIyVLWnIXP09kdFI60kU2M6ImpFe9mbif143NeGNn3GZpAYlWywKU0FMTGZfkwFXyIyYWEKZ4vZWwkZUUWZsNiUbgrf88ippXVS9q6rbuKzUbvM4inACp3AOHlxDDe6hDk1ggPAMr/DmPDovzrvzsWgtOPnMMfyB8/kDrG+M2Q==</latexit>

Q
<latexit sha1_base64="euZFEpH9/Bzjb/S+jpKjq4ZTYL4=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahXsquKHosevHYQr+gXUo2zbahSXZJskJZ+he8eFDEq3/Im//GbLsHbX0w8Hhvhpl5QcyZNq777RQ2Nre2d4q7pb39g8Oj8vFJR0eJIrRNIh6pXoA15UzStmGG016sKBYBp91g+pD53SeqNItky8xi6gs8lixkBJtMalZbl8Nyxa25C6B14uWkAjkaw/LXYBSRRFBpCMda9z03Nn6KlWGE03lpkGgaYzLFY9q3VGJBtZ8ubp2jC6uMUBgpW9Kghfp7IsVC65kIbKfAZqJXvUz8z+snJrzzUybjxFBJlovChCMToexxNGKKEsNnlmCimL0VkQlWmBgbT8mG4K2+vE46VzXvpuY2ryv1+zyOIpzBOVTBg1uowyM0oA0EJvAMr/DmCOfFeXc+lq0FJ585hT9wPn8AFuqNnA==</latexit>

Q(T )=

dynamics:
<latexit sha1_base64="bUc0bajg6E7loorpjmTUWJpJ2H8=">AAACDHicbVDLSgMxFM34rPVVdekmWAQXY5kpim6EohuXLfQFzbRkMpk2NPMgyQhlmA9w46+4caGIWz/AnX9j2s5CWw8EDuecy809bsyZVJb1baysrq1vbBa2its7u3v7pYPDtowSQWiLRDwSXRdLyllIW4opTruxoDhwOe2447up33mgQrIobKpJTJ0AD0PmM4KVlgalMvIFJqnXr8JGlnrNfjVD5g0yz5GJooAOMTIbOmVVrBngMrFzUgY56oPSF/IikgQ0VIRjKXu2FSsnxUIxwmlWRImkMSZjPKQ9TUMcUOmks2MyeKoVD/qR0C9UcKb+nkhxIOUkcHUywGokF72p+J/XS5R/7aQsjBNFQzJf5CccqghOm4EeE5QoPtEEE8H0XyEZYd2O0v0VdQn24snLpF2t2JcVq3FRrt3mdRTAMTgBZ8AGV6AG7kEdtAABj+AZvII348l4Md6Nj3l0xchnjsAfGJ8/VyaZ4g==</latexit>

d2Q

dT 2
= �!Q

<latexit sha1_base64="z/N2VY7ZbsO3oFSdGznN4SWp038=">AAACGnicbVDLSgNBEJz1bXxFPXoZDELEJeyKohfBx8WjQmICmRBmJ73J4OzsMtMrhOB3ePFXvHhQxJt48W+cxBx8FTQUVd10d0WZkhaD4MObmJyanpmdmy8sLC4trxRX165smhsBNZGq1DQibkFJDTWUqKCRGeBJpKAeXZ8N/foNGCtTXcV+Bq2Ed7WMpeDopHYxvCxXt5l/xPwT5jMrNVMQY5myNIEuZ36V+TvOyHqSMiO7PdxuF0tBJRiB/iXhmJTIGBft4hvrpCJPQKNQ3NpmGGTYGnCDUii4LbDcQsbFNe9C01HNE7Ctwei1W7rllA6NU+NKIx2p3ycGPLG2n0SuM+HYs7+9ofif18wxPmwNpM5yBC2+FsW5opjSYU60Iw0IVH1HuDDS3UpFjxsu0KVZcCGEv1/+S652K+F+JbjcKx2fjuOYIxtkk5RJSA7IMTknF6RGBLkjD+SJPHv33qP34r1+tU5445l18gPe+ycb3Z52</latexit>

Q(T ) = A sin (! T + �)general solution:

true physical system is pendulum + clock physics is in the relation Q(T)

Q and T can be measured (partial observables); what can be predicted is only Q(T) (complete observable)

parametrized classical single 1d pendulum

turn dynamical variables into functions of new "time parameter" (i.e. scalar fields in d=1):
<latexit sha1_base64="9r07FK+PYaUIc1+ZTrfEbxH2gKI=">AAAB/nicbVDLSsNAFJ3UV62vqLhyM1iEuimJKLosunHZQl/QhDKZTNqhk0k6D6GEgr/ixoUibv0Od/6N0zYLbT1w4cw59zL3niBlVCrH+bYKa+sbm1vF7dLO7t7+gX141JaJFpi0cMIS0Q2QJIxy0lJUMdJNBUFxwEgnGN3P/M4jEZImvKkmKfFjNOA0ohgpI/Xtk0bFU0hfeOOxRiFsLl59u+xUnTngKnFzUgY56n37ywsTrGPCFWZIyp7rpMrPkFAUMzIteVqSFOERGpCeoRzFRPrZfP0pPDdKCKNEmOIKztXfExmKpZzEgemMkRrKZW8m/uf1tIpu/YzyVCvC8eKjSDOoEjjLAoZUEKzYxBCEBTW7QjxEAmFlEiuZENzlk1dJ+7LqXledxlW5dpfHUQSn4AxUgAtuQA08gDpoAQwy8AxewZv1ZL1Y79bHorVg5TPH4A+szx+zlpSs</latexit>

Q(⌧) T (⌧)
<latexit sha1_base64="XcrSb+jqOTXB37a8ztwrVKa2C4E="></latexit>

dQ

d⌧
= PQ

dT

d⌧
= PT H(Q,PQ, T, PT ) = PT (⌧) +

1

2
P

2
Q(⌧) +

1

2
!
2
Q

2(⌧)

dQ

d⌧
= PQ =

dH

dPQ

dT

d⌧
= PT =

dH

dPT
= 1

dPQ

d⌧
= PQ = �dH

dQ
= �!

2
Q

dPT

d⌧
= �dH

dT
= 0

+ invariance (covariance of equations) under 1d diffeos:
<latexit sha1_base64="Lgg1QhGoC5HCTWZ1fjTfXDdMpig=">AAACAXicbVBNS8NAEN3Ur1q/ol4EL4tFqJeSiKLHohePFewHNKFstpt26WYTdidKKfXiX/HiQRGv/gtv/hs3bQ7a+mDg8d4MM/OCRHANjvNtFZaWV1bXiuuljc2t7R17d6+p41RR1qCxiFU7IJoJLlkDOAjWThQjUSBYKxheZ37rninNY3kHo4T5EelLHnJKwEhd+8ADkmJP8f4AiFLxAw4rmXTStctO1ZkCLxI3J2WUo961v7xeTNOISaCCaN1xnQT8MVHAqWCTkpdqlhA6JH3WMVSSiGl/PP1ggo+N0sNhrExJwFP198SYRFqPosB0RgQGet7LxP+8TgrhpT/mMkmBSTpbFKYCQ4yzOHCPK0ZBjAwhVHFzK6YDoggFE1rJhODOv7xImqdV97zq3J6Va1d5HEV0iI5QBbnoAtXQDaqjBqLoET2jV/RmPVkv1rv1MWstWPnMPvoD6/MH5wyWhw==</latexit>

⌧ ! f(⌧)

only diffeo-invariant observable, evaluated on solutions on the dynamics, is:
<latexit sha1_base64="z/N2VY7ZbsO3oFSdGznN4SWp038=">AAACGnicbVDLSgNBEJz1bXxFPXoZDELEJeyKohfBx8WjQmICmRBmJ73J4OzsMtMrhOB3ePFXvHhQxJt48W+cxBx8FTQUVd10d0WZkhaD4MObmJyanpmdmy8sLC4trxRX165smhsBNZGq1DQibkFJDTWUqKCRGeBJpKAeXZ8N/foNGCtTXcV+Bq2Ed7WMpeDopHYxvCxXt5l/xPwT5jMrNVMQY5myNIEuZ36V+TvOyHqSMiO7PdxuF0tBJRiB/iXhmJTIGBft4hvrpCJPQKNQ3NpmGGTYGnCDUii4LbDcQsbFNe9C01HNE7Ctwei1W7rllA6NU+NKIx2p3ycGPLG2n0SuM+HYs7+9ofif18wxPmwNpM5yBC2+FsW5opjSYU60Iw0IVH1HuDDS3UpFjxsu0KVZcCGEv1/+S652K+F+JbjcKx2fjuOYIxtkk5RJSA7IMTknF6RGBLkjD+SJPHv33qP34r1+tU5445l18gPe+ycb3Z52</latexit>
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(complete, Dirac) observables = correlations on superspace (space of fields)



• introduce matter fields as material reference frames (they "cover" manifold 
just like coordinate frames) 

• express theory in terms of -relations- between values of metric 
field and values of material reference frames

relational strategy implemented by:

typical choices: free scalar matter, pressureless dust, ...

Dust as standard of time and space
GR with pressureless dust: S = SEH − 1

2 ∫ℳ
d4x |g | M (gμνUμUν + 1) Brown, Kuchar ’95

dU = − dT + WkdZk

[see also Kuchar, Torre ’91; Rovelli ’91; 

Husain, Pawlowski ’11]

proper time comoving coords.

 are “perfect” dynamical reference fields (parametrize )T, Zk ℳ

dust 4-velocity:

T (x) = ⌧ = const

T (x) = ⌧ 0 = const

Zk(x) = z0k = constZk(x) = zk = const

ℳ

 use to construct relational observables explicitly⇒

Fqkl,(T,Zk)(τ, zk) =
∞

∑
n=0

1
n! {⋯, ⋯}n Fπij,(T,Zk)(τ, zk) =

∞

∑
n=0

1
n! {⋯, ⋯}n

[Giesel, Hofmann, Thiemann, Winkler ’10]

 still canonical⇒
{Fqkl,(T,Zk)(τ, z), Fπij,(T,Zk)(τ, z′�)} = κ δi

(kδ
j
l) δ(z, z′�)
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no known formulation of GR purely in terms of diffeomorphism invariant quantities

P. Hoehn, ....., '21,'22, '23, '24 ....

C. Goeller, P. Hoehn, J. Kirklin, '22
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many obstacles to full deparametrization of GR

• in general: global material frames not physical, 
realistic material frames not global

• relational formulation with realistic matter can only be local, 
approximate; need to use several physical frames

P. Hoehn, ....., '21,'22, '23, '24 ....

C. Goeller, P. Hoehn, J. Kirklin, '22
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• in general: global material frames not physical, 
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approximate; need to use several physical frames

at quantum level, even more tricky:

even more difficult to identify suitable clock

internal clock subject to quantum 
fluctuations

no reason to expect exact unitary evolution 
wrt internal clock

exact constructions often require to solve 
full dynamics

P. Hoehn, ....., '21,'22, '23, '24 ....
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three approaches

3 approaches to relational dynamics
Relational observables in Dirac quantization

1. Quantize all DoFs on kin. Hilbert space  
2. Solve constraints  
3. Turn set of solutions  into phys. Hilbert space  
4. Construct relational observables  on 

ℋkin
ĈH |ψphys⟩ = Ĉa |ψphys⟩ = 0

|ψphys⟩ ℋphys
̂Ff,Ti

(τi) ℋphys

Reduced phase space quantization

1. Solve constraints classically, remove gauge DoFs 
2. Quantize only gauge-inv. observables (no constraints in the QT)

Page-Wootters formalism

1. Steps 1-3 from Dirac quantization 
2. Condition  on reference system ‘orientation’  

(conditional probabilies)
|ψphys⟩
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general point: physics is on superspace (space of field configurations), not manifold (only auxiliary structure)

difficult to express/extract it in general QG case



general point: physics is on superspace (space of field configurations), not manifold (only auxiliary structure)

things much simpler in cosmological context

restriction to global features of universe: (approximately) homogeneous fields

example: flat Friedmann universe (homogeneous, isotropic)

dynamical variables = scale factor (universe volume) and massless scalar field

• flat FLRW cosmology of a scalar field: This model contains two dynamical fields �a =

{a,'}. The former plays the role of the scale factor in the metric

ds2 = �N2(t)dt2 + a2(t)�abdx
adxb (1.5)

while the second dynamical field corresponds to an homogeneous scalar field coupled to this

metric.

• Schwarzschild mechanics: The geometry contains two dynamical fields denoted �a =

{A,B} and the line element reads

ds2 = ✏

✓
�N2(t)dt2 +

dy2

A2(t)

◆
+ L2

sB
2(t)

�
d✓2 + sin2 ✓d�2

�
(1.6)

This geometry describes both the interior and the exterior of the black hole. When ✏ = +1,

the coordinate t is timelike and labels spacelike hypersurface foliating the black hole interior,

while for ✏ = �1, it is spacelike and it labels the time-like foliation of the exterior region, thus

playing the role of the radius.

• Bianchi I cosmology: Finally, the third model corresponds to the simplest anisotropic

cosmology. It contains four dynamical fields �a = {↵,�, �,'}. The first three enters in the

metric as

ds2 = �N2(t)dt2 + ↵2(t)dx2 + �2(t)dy2 + �(t)dz2 (1.7)

while the last one plays the role an homogeneous scalar matter field.

On top of being physically relevant gravitational models, in cosmology and astrophysics, these

systems have rather generic mathematical properties. Both flat FLRW cosmology and Bianchi

I cosmologies are free systems, with a vanishing potential and a conformally flat super-metric.

Schwarzschild mechanics is then the typical example of a two-dimensional field space, thus with a

conformally flat super-metric, but with a non-vanishing potential.

For free systems with vanishing potential, the mini-superspace action reads:

S[N,�a, �̇a; t] = c`P

Z
dt


1

2N
gab(�)�̇

a�̇b

�
. (1.8)

This is simply a geodesic Lagrangian: the equations of motion impose that the space-time metric

components �a follow a null geodesic in field space provided with the super-metric gab. The fact

that we must consider null geodesics is imposed by the equation of motion with respect to lapse

variations. Symmetries of the theory will then map the set of null geodesics in field space onto

itself.

For general mini-superspaces with non-vanishing potential, one can absorb the potential into a

field-dependent redefinition of the lapse by defining a proper time coordinate:

d⌘ ⌘ NV (�) dt . (1.9)

5

GR action reduces to: invariant under 1d diffeos

29

massless scalar field. This is given by [57]

S =
3

8⇡G

Z
dtN

✓
�
aV0ȧ2

N2
+

V

N

�̇2

2N

◆

= �
3

8⇡G

Z
dtNV

 
H2

N2
�

4⇡G

3

�̇2

N2

!
,

where � is the massless scalar field, a dot denotes a
derivative with respect to t and V0 is the fiducial coordi-
nate volume (so that V ⌘ V0a3). The constraint obtained
from an Hamiltonian analysis of the above action is given
by

C = �
3

8⇡G
NVH2 +

N⇡2
�

2V
= 0 . (C1)

Together with the Poisson brackets {H,V } = 4⇡G and
{�,⇡�} = 1, the above constraint implies that the equa-
tion of motion for the massless scalar field is given by

d�

dt
= {�, C} =

N⇡�

V
,

The dynamics of V is instead given by

dV

d�
= {V, C} = 3NV ,

and by using the massles sclar field equation into the
equation for V we obtain

✓
1

3V

dV

d�

◆2

⌘

✓
V 0

3V

◆2

=
4⇡G

3
. (C2)

By deriving this equation with respect to �, we find in-
stead

V 00

V
=

✓
V 0

V

◆2

= 12⇡G . (C3)

These are the relational equations for a spatially flat
FRW spacetime.
Gauge fixing Let us now perform a gauge fixing,

choosing � as our time, i.e., choosing N = V �̇/⇡�. In
this way, we obtain

S = �
3

8⇡G

Z
dt�̇

V 2

⇡�

 
H2⇡2

�

V 2�̇2
�

4⇡G

3

�̇2⇡2
�

V 2�̇2

!

= �
3⇡�

8⇡G

Z
d�

✓
H

2
�

4⇡G

3

◆
. (C4)

The equations of motion generated by this action are
easily obtained by writing H = V 0/(3V ), and they are
given by

V 00

V
=

(V 0)2

V 2
,

which is the second Friedmann equation, and which gives
indeed the correct dynamics. The Hamiltonian obtained
from the above Lagrangian, therefore, can be written im-
mediately as

Hrel = �
3⇡�

8⇡G
H

2 , (C5)

neglecting irrelevant constants.
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massless scalar field. This is given by [57]
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where � is the massless scalar field, a dot denotes a
derivative with respect to t and V0 is the fiducial coordi-
nate volume (so that V ⌘ V0a3). The constraint obtained
from an Hamiltonian analysis of the above action is given
by

C = �
3

8⇡G
NVH2 +

N⇡2
�

2V
= 0 . (C1)

Together with the Poisson brackets {H,V } = 4⇡G and
{�,⇡�} = 1, the above constraint implies that the equa-
tion of motion for the massless scalar field is given by
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,

The dynamics of V is instead given by
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and by using the massles sclar field equation into the
equation for V we obtain
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By deriving this equation with respect to �, we find in-
stead
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These are the relational equations for a spatially flat
FRW spacetime.
Gauge fixing Let us now perform a gauge fixing,

choosing � as our time, i.e., choosing N = V �̇/⇡�. In
this way, we obtain
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The equations of motion generated by this action are
easily obtained by writing H = V 0/(3V ), and they are
given by

V 00

V
=

(V 0)2

V 2
,

which is the second Friedmann equation, and which gives
indeed the correct dynamics. The Hamiltonian obtained
from the above Lagrangian, therefore, can be written im-
mediately as

Hrel = �
3⇡�

8⇡G
H

2 , (C5)

neglecting irrelevant constants.
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minisuperspace is 2d flat manifold
<latexit sha1_base64="YcQla2iZTRz5fLWjXrIo1Umhhh0=">AAACAnicbVBNS8NAEN34WetX1JN4WSyCBymJFPVY9OKxgv2AJpTNdtMs3WzC7kQooXjxr3jxoIhXf4U3/43bNgdtfTDweG+GmXlBKrgGx/m2lpZXVtfWSxvlza3tnV17b7+lk0xR1qSJSFQnIJoJLlkTOAjWSRUjcSBYOxjeTPz2A1OaJ/IeRinzYzKQPOSUgJF69qEnWAhejgk+wx6NOPYUH0TgjXt2xak6U+BF4hakggo0evaX109oFjMJVBCtu66Tgp8TBZwKNi57mWYpoUMyYF1DJYmZ9vPpC2N8YpQ+DhNlSgKeqr8nchJrPYoD0xkTiPS8NxH/87oZhFd+zmWaAZN0tijMBIYET/LAfa4YBTEyhFDFza2YRkQRCia1sgnBnX95kbTOq+5FtXZXq9SvizhK6Agdo1PkoktUR7eogZqIokf0jF7Rm/VkvVjv1sesdckqZg7QH1ifP+Oalnw=</latexit>

{a,�}

quantum cosmology

satisfying Hamiltonian constraint:
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 (a,�)wavefunction on minisuperspace
<latexit sha1_base64="1qPjlFTUcIU1EDNWzgHbcgd9RRI=">AAACNnicbVDLSgNBEJz1GeMr6tHLYBASCGFXggoiiF68CBFMFLIh9E5mkyGzD2Z6hbDkq7z4Hd68eFDEq5/gbMwhJhYMVFd109PlxVJotO1Xa2FxaXllNbeWX9/Y3Nou7Ow2dZQoxhsskpF68EBzKULeQIGSP8SKQ+BJfu8NrjL//pErLaLwDocxbwfQC4UvGKCROoUbNwDsM5Dp9ciV3McShQp1Y1AoQHbgjLqsL6aUrKSuEr0+lqlb16IElUwr03NqdwpFu2qPQeeJMyFFMkG9U3hxuxFLAh4ik6B1y7FjbKfZLib5KO8mmsfABtDjLUNDCLhup+OzR/TQKF3qR8q8EOlYnZ5IIdB6GHimMztSz3qZ+J/XStA/bacijBPkIftd5CeSYkSzDGlXKM5QDg0BpoT5K2V9UMDQJJ03ITizJ8+T5lHVOa7WbmvFi8tJHDmyTw5IiTjkhFyQa1InDcLIE3kl7+TDerberE/r67d1wZrM7JE/sL5/APCQqiY=</latexit>

H (a, @a;�, @�) (a,�) = 0 that can be turned into evolution eqn wrt to
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difficult to express/extract it in general QG case



general point: physics is on superspace (space of field configurations), not manifold (only auxiliary structure)

things much simpler in cosmological context

restriction to global features of universe: (approximately) homogeneous fields

example: flat Friedmann universe (homogeneous, isotropic)

dynamical variables = scale factor (universe volume) and massless scalar field

• flat FLRW cosmology of a scalar field: This model contains two dynamical fields �a =

{a,'}. The former plays the role of the scale factor in the metric

ds2 = �N2(t)dt2 + a2(t)�abdx
adxb (1.5)

while the second dynamical field corresponds to an homogeneous scalar field coupled to this

metric.

• Schwarzschild mechanics: The geometry contains two dynamical fields denoted �a =

{A,B} and the line element reads

ds2 = ✏
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This geometry describes both the interior and the exterior of the black hole. When ✏ = +1,

the coordinate t is timelike and labels spacelike hypersurface foliating the black hole interior,

while for ✏ = �1, it is spacelike and it labels the time-like foliation of the exterior region, thus

playing the role of the radius.

• Bianchi I cosmology: Finally, the third model corresponds to the simplest anisotropic

cosmology. It contains four dynamical fields �a = {↵,�, �,'}. The first three enters in the

metric as

ds2 = �N2(t)dt2 + ↵2(t)dx2 + �2(t)dy2 + �(t)dz2 (1.7)

while the last one plays the role an homogeneous scalar matter field.

On top of being physically relevant gravitational models, in cosmology and astrophysics, these

systems have rather generic mathematical properties. Both flat FLRW cosmology and Bianchi

I cosmologies are free systems, with a vanishing potential and a conformally flat super-metric.

Schwarzschild mechanics is then the typical example of a two-dimensional field space, thus with a

conformally flat super-metric, but with a non-vanishing potential.

For free systems with vanishing potential, the mini-superspace action reads:

S[N,�a, �̇a; t] = c`P

Z
dt


1

2N
gab(�)�̇

a�̇b

�
. (1.8)

This is simply a geodesic Lagrangian: the equations of motion impose that the space-time metric

components �a follow a null geodesic in field space provided with the super-metric gab. The fact

that we must consider null geodesics is imposed by the equation of motion with respect to lapse

variations. Symmetries of the theory will then map the set of null geodesics in field space onto

itself.

For general mini-superspaces with non-vanishing potential, one can absorb the potential into a

field-dependent redefinition of the lapse by defining a proper time coordinate:

d⌘ ⌘ NV (�) dt . (1.9)
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massless scalar field. This is given by [57]

S =
3

8⇡G

Z
dtN

✓
�
aV0ȧ2
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where � is the massless scalar field, a dot denotes a
derivative with respect to t and V0 is the fiducial coordi-
nate volume (so that V ⌘ V0a3). The constraint obtained
from an Hamiltonian analysis of the above action is given
by
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Together with the Poisson brackets {H,V } = 4⇡G and
{�,⇡�} = 1, the above constraint implies that the equa-
tion of motion for the massless scalar field is given by
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By deriving this equation with respect to �, we find in-
stead
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These are the relational equations for a spatially flat
FRW spacetime.
Gauge fixing Let us now perform a gauge fixing,

choosing � as our time, i.e., choosing N = V �̇/⇡�. In
this way, we obtain
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The equations of motion generated by this action are
easily obtained by writing H = V 0/(3V ), and they are
given by
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,

which is the second Friedmann equation, and which gives
indeed the correct dynamics. The Hamiltonian obtained
from the above Lagrangian, therefore, can be written im-
mediately as

Hrel = �
3⇡�
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H

2 , (C5)

neglecting irrelevant constants.
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where � is the massless scalar field, a dot denotes a
derivative with respect to t and V0 is the fiducial coordi-
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The equations of motion generated by this action are
easily obtained by writing H = V 0/(3V ), and they are
given by
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which is the second Friedmann equation, and which gives
indeed the correct dynamics. The Hamiltonian obtained
from the above Lagrangian, therefore, can be written im-
mediately as
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neglecting irrelevant constants.
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N2
+

V

N

�̇2

2N

◆

= �
3

8⇡G

Z
dtNV

 
H2

N2
�

4⇡G

3

�̇2

N2

!
,

where � is the massless scalar field, a dot denotes a
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{a,�}

quantum cosmology

satisfying Hamiltonian constraint:
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 (a,�)wavefunction on minisuperspace
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H (a, @a;�, @�) (a,�) = 0 that can be turned into evolution eqn wrt to
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difficult to express/extract it in general QG case

summary

do not expect to find manifold etc neither at fundamental QG level, nor in its effective description

to identify "spacetime = manifold" or "spacetime physics = physics on manifold" is approximation at best 

(corresponds to case in which set of four scalar fields behave like test fields 
covering manifold, and can be used as coordinates for manifold points)
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Presuppostions:

a) Modeling starts with a system/agent or system/observer split. If the system is to be also modeled in its spatiotemporal 

properties, existence of a system/observer split is encoded then in a boundary for such region

b) We can include aspects of observers/agents in our models (as specific physical systems, boundary conditions, external 

potentials, ...). In particular, observers/agents come with reference frames (clock+rods) to localize systems in spacetime

c) If reference frames are to be considered part of physical reality, their physical properties, incl. interaction with other 

physical systems, backreaction on spacetime geometry, quantum properties, should be modeled too



Much recent work on (quantum) gravity in finite, bounded regions

Challenges and surprises

and on proper way to "glue" together finite bounded regions of spacetime

22

ISOLATED SUBSYSTEMS

Is there a useful notion of ‘subsystem’ that is not asymptotic? 

Yes. We can: 
(right) invoke particular boundary conditions along time (E.g. Harlow & Wu 2019, or Hohn & Carrozza
2021); or,
(left) in the relativistic case, consider the initial state for a small enough region of spacetime, i.e.
the future domain of dependence. (E.g. HG & Riello, 2020, Riello 2020, 2021, Riello & Schiavina 2022)  
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ASYMPTOTIC vs  SUBSYSTEM 

Generically we require different conventions for different portions of spacetime. 

Thus we come to the treatment of subsystems: 

This is like the comparison of spacetimes, but the comparison only occurs across a common 
boundary (or region).

On the overlap, what I call ‘x’ you may call ‘y’. 

We need a notion of counterparthood between subsystems. 

So we need to make the representational conventions explicit again. This is needed to 
represent subsystems to each other. 

• diffeos are "broken" at boundaries 

• new "edge modes" appear as dynamical dofs 

• they are needed to fully characterize bulk physics 

• they are needed to properly glue regions to form extended ones

Strominger, Harlow, Donnelly, Freidel, Donnay, Pranzetti, Geiller, Gomes, Riello, Carrozza, Hoehn, .......
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2. Localization in space and evolution in time are relational and require physical frames - Observers use physical 
(material) clocks and rods to define them, so physical observables are best understood as relations between dynamical 
fields and the (material) clock and rods used for their localization in spacetime. They are non-local with respect to the 
manifold: local physics takes place in field space, not in the supporting manifold.
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5. Gravitational physics in finite regions requires to endow boundaries 
with dynamical edge modes, also in order to preserve full gauge 
invariance, when diffeos are taken to act on boundary degrees of freedom

‣ Conserved quantity whose integral agrees with 
ADM momentum at infinity.

Edge Modes in Linearised Gravity
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‣ Definition  constraint relating bulk and boundary.Γ
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can they become dynamical to, in full QG?

indeed, we have examples of QG formalisms 
where they all become dynamical
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dynamical dimension

causal dynamical triangulations

Pirsa: 13050055 Page 18/41

lattice gravity path integral = sum over equilateral 
lorentzian triangulations with global foliation

strong indications of (at least) one continuum phase with nice geometric properties (e.g. emergent de Sitter universe)

• in such phase, can evaluate spectral dimension of effective continuum geometry, by studying diffusion 
processes on the triangulations summed over, characterized by the return probability:

Pirsa: 13050055 Page 25/41

spectral dimension

• in the continuum limit, one finds:

• correct large scale dimension (equal to topological 

dimension of simplices (i.e. D = d)

• dimensional reduction to D = 2 at high energies/
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similar results (but with less dynamical control) 
in canonical LQG, spin foam models, GFT



dynamical signature

canonical loop quantum cosmology loop quantization of symmetry-reduced (cosmological) sector of GR

classical GR constraint algebra

3.2 Generally covariant gauge theory

A generally covariant theory independent of the choice of coordinates on space-time must
be invariant under the hypersurface-deformation algebra, as a more general, local version of
the Poincaré algebra. Since the induced metric qab changes under deformations of a spatial
slice and appears in structure functions, it is natural to take it as one of the canonical fields,
together with a momentum pab. On the resulting phase space, a gauge theory is invariant
under hypersurface deformations if there are constraints D[Na] = 0 and H [N ] = 0 such
that

{D[Na], D[Ma]} = D[LMaNa] (22)

{H [N ], D[Ma]} = H [LMaN ] (23)

{H [N1], H [N2]} = D[qab(N1∂bN2 −N2∂bN1)] (24)

is realized as an algebra under Poisson brackets.
Any such theory is a generally covariant canonical theory of gravity [23]. Space-time

coordinate changes of phase-space functions along vector fields ξµ = (ξ0, ξa) are realized
by the Hamiltonian flow

Lξf(q, p) = {f(q, p), H [Nξ0] +D[ξa +Naξ0]} . (25)

(The additional coefficients of N and Na result from a different identification of directions
in space-time and canonical formulations, the former referring to coordinate directions, the
latter to directions tangential or normal to spatial slices; see [24, 8].)

Local invariance under hypersurface deformations is then equivalent to general co-
variance, and an invariant theory in which hypersurface deformations are consistently
implemented as gauge transformations is the canonical analog of a space-time scalar ac-
tion. Moreover, the symmetry is so strong that it determines much of the dynamics:
Hypersurface-deformation covariant second-order equations of motion for qab equal Ein-
stein’s equation [25, 26]. All classical gravity actions, including higher-curvature ones,
have the same gauge-algebra (unless they break covariance).

These important results leave only a few options for quantum corrections. First, one
may decide to break covariance. Since covariance is implemented by gauge transformations,
the theory is anomalous if the gauge is broken. Inconsistent dynamics results: the con-
straints D[Na] = 0 and H [N ] = 0 are not preserved by evolution equations. Inconsistency
can formally be avoided by fixing the gauge or frame before quantization, but this way out
does not produce reliable cosmological perturbation equations (see the explicit example in
[27]): Different choices of gauge fixing within the same theory lead to different physical
results after quantization. If the gauge is broken, the resulting quantum “corrected” theory
is not consistent (unless there is a classically distinguished frame). Breaking the gauge is
widely recognized as a bad act to be avoided, but still it often enters implicitly even in
well-meaning approaches, most often when deparameterization is used in quantum gravity.

The second option of quantum corrections is realized by approaches that preserve the
hypersurface-deformation algebra but allow equations of motion to be of higher than second
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deformed by QG corrections

order, circumventing Hojman–Kuchar̂–Teitelboim uniqueness of [25, 26]. We arrive at
higher-curvature effective actions. Possible quantum corrections in cosmology are then
tiny, given by ratios of the quantum-gravity to the Hubble scale, or ρ/ρP with the immense
Planck density ρP.

As the third option, we may allow for non-trivial consistent deformations of the hypersurface-
deformation algebra (and by implication the Poincaré algebra). Full consistency is then
realized because no gauge generator disappears; only their algebraic relations change. Phys-
ically, we would obtain quantum corrections in the space-time structure, not just in the
dynamics, and potentially new, not extremely suppressed corrections may result. This
option is not often considered, but it is realized in loop quantum gravity, where

{H(β)[N1], H(β)[N2]} = D[βqab(N1∂bN2 −N2∂bN1)] (26)

with a phase-space function β implementing quantum corrections [28].
Loop quantum gravity implies consistent deformations of the hypersurface-deformation

algebra. No gauge transformations are broken, preserving consistency. As a consequence
of the deformation, geometrical notions may become non-standard. For instance, there is
no effective line element with a standard manifold because coordinate differentials in

ds2eff = g̃abdx
adxb (27)

do not transform by deformed gauge transformations {·, H(β)[Nξ0] + D[ξa + Naξ0]} that
change the quantum-corrected spatial metric q̃ab, usually completed canonically to a space-
time line element −N2dt2 + q̃ab(dxa + Nadt)(dxb + N bdt). Instead, one could try to use
non-commutative [29] or fractional calculus [30] to modify transformations of dxa, making
ds2eff invariant, but no such version has been found yet. Instead, once a consistent algebra
is known, one can evaluate the theory using observables according to the deformed gauge
algebra, for instance in cosmology [31, 32, 33, 34] or for black-hole space-times [35, 36,
37]. At this stage, after quantization, one may use gauge fixing of the deformed gauge
transformations or deparameterization because the consistency of the gauge system with
all its quantum corrections has been ensured.

3.3 Loop quantum gravity

To see how deformed constraint algebras and space-time structures arise in loop quantum
gravity, we should have a closer look at its technical details. The basic canonical variables in
this approach are the densitized triad Ea

i such that Ea
i E

b
i = det(qcd)qab, and the Ashtekar–

Barbero connection Ai
a = Γi

a + γKi
a with the spin connection Γi

a, extrinsic curvature Ki
a

and the Barbero–Immirzi parameter γ [38, 39]. The canonical structure is determined by

{Ai
a(x), E

b
j (y)} = 8πγGδbaδ

i
jδ(x, y) .

In preparation for quantization, one smears the basic fields by integrating them to
holonomies and fluxes,

he(A) = P exp(∫
e
Ai

aτiė
adλ) , FS(E) =

∫

S

naE
a
i τ

id2y . (28)
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phase space function encoding quantum corrections

result probably has more general validity (beyond symmetry-reduced case)

• computing algebra along cosmological evolution, close to would-be big bang or big bounce, one has
<latexit sha1_base64="PtV1azKWi+2ZzWJxwvVsLVpGN9A=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr4OHoBePEcxDkiXMTnqTIbOzy8ysEJZ8hRcPinj1c7z5N06SPWi0oKGo6qa7K0gE18Z1v5zC0vLK6lpxvbSxubW9U97da+o4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDP1W4+oNI/lvRkn6Ed0IHnIGTVWeugGaCi5Im6vXHGr7gzkL/FyUoEc9V75s9uPWRqhNExQrTuemxg/o8pwJnBS6qYaE8pGdIAdSyWNUPvZ7OAJObJKn4SxsiUNmak/JzIaaT2OAtsZUTPUi95U/M/rpCa89DMuk9SgZPNFYSqIicn0e9LnCpkRY0soU9zeStiQKsqMzahkQ/AWX/5LmidV77x6dndaqV3ncRThAA7hGDy4gBrcQh0awCCCJ3iBV0c5z86b8z5vLTj5zD78gvPxDWh4j4I=</latexit>

� < 0

• negative values correspond to constraint algebra for euclidean signature

• thus no evolution across large density/high curvature region, but quantum regime with no notion of evolution at all

• can define full Hilbert space of quantu geometry states + Hamiltonian constraint operator (quantum dynamics) 

• can compute (anomaly-free) algebra of constraints 

• quantum corrections appear to lead to bouncing scenario replacing big bang singularity
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dynamical topology can we implement and control sum over topologies?

old (formal) idea: third quantization of gravity

idea: QFT on superspace

canonical QG wavefunction ----> field on superspace (space of geometries on 3-sphere)

with action

(mathematically ill-defined, but conceptually useful)
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Hamiltonian constraint non-local interaction on superspace

quantize the theory via path integral, defined perturbatively in sum over "Feynman diagrams"
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QG QUESTIONS GROUP FIELD THEORY RECENT RESULTS SUMMARY & OUTLOOK

LESS CONSERVATIVE (EVEN MORE FORMAL): DYNAMICAL TOPOLOGY?

2nd (3rd?) quantization of gravity? (Giddings, Strominger, Banks, Coleman, Hawking, Kuchar, Isham, McGuigan,...)

a) field on space of geometries (say, on S3);
b) all possible interactions (creation/annihilation) of universes (topology change)?
Ψ(hij) → φ(hij) on (super-)space of geometries (Giulini, ’09) on S3

idea of quantum theory:

Feynman diagrams M: + + +........

Z =

Z
Dφ e−S(φ) =

X

M

λVZM =
X

M

λV
Z

Dg ei S(g;M)

“impossible” to define in proper mathematical way + conceptual issues

→ making sense of it by going discrete/local? → matrix models, GFT

7 / 36

Feynman diagrams = manifolds of different topologies Feynman amplitudes = sum over geometries      
(i.e. gravitational path integral) for given topology
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discrete (mathematically well-defined) realization: matrix models, tensor models, group field theory
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rank-3 example, results valid in any dimension

many other results on 
topology of Feynman diagrams
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dominated by some special spherical triangulations (melons) in large-N limit

rank-3 example, results valid in any dimension

many other results on 
topology of Feynman diagrams

(topological) Group Field Theories same techniques from tensor models
dominance of melons in large-cutoff limit  (Gurau, ’11)

suppression of pseudo-manifolds  (Carrozza, DO, ’12)

detailed scaling behaviour   (Bonzom, Smerlak, ’10, ’11)

random tensor models enriched with group-theoretical data 
(QFT on group manifold)

dynamical topology can we implement and control sum over topologies?
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several challenges for the emergence of spacetime in QG (valid for all QG formalisms)

3 (+1) levels of emergence for space and time in QG
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and what is the physics (and observational signatures) of the geometrogenesis phase transition?
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entanglement/geometry correspondence

If spacetime is emergent, which quantum features of the fundamental entities are 
responsible for its geometric properties?  

Recent results put in correspondence geometric quantities (e.g. distances, areas) 
with entanglement between constituents of non-gravitational systems. 

Is the world “made of entanglement”? Is geometry just quantum information?



entanglement/geometry correspondence

If spacetime is emergent, which quantum features of the fundamental entities are 
responsible for its geometric properties?  

Recent results put in correspondence geometric quantities (e.g. distances, areas) 
with entanglement between constituents of non-gravitational systems. 

Is the world “made of entanglement”? Is geometry just quantum information?

many results in the context of AdS/CFT 
correspondence but suggestion is more 
radical than that

• spacetime bulk reconstruction from CFT quantum correlations 
between boundary regions

e.g. (mutual information) entanglement ~ 
spacetime connectivity

• holographic entanglement entropy - CFT entanglement entropy as bulk geometry

e.g. Ryu-Takayanagi entropy formula

Ryu-Takanayagi, ’06, ’12; 
Miyaji-Takayanagi ’15 

suggests generalization of BH entropy to other (arbitrary?) surfaces



in several QG approaches: 
QG states = entanglement networks of quantum geometric blocks

QG STATES AS BULK/BOUNDARY MAPS

Possible viewpoints for Tn1...nd :

n1...nd output

state T 2 H@N

a = {n1, ..., nk} input, b = {nk+1, ..., nd} output

map T : H(@N)a ! H(@N)b

Similarly,

GFT state |'�i 2 Hb ⌦H@� (specific assignment of edge spins!),

Hb =
VO

v=1

Inv

2

4
dO

i=1

Vjvi

3

5 bulk (set of intertwiners), H@� =
O

ev
i 2@�

Vjvi boundary

defines a bulk-to-boundary map:

M :Hb ! H@�

|⇣i ! M |⇣i = h⇣|'�i = |'@�(⇣)i
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algebraic data on graph

graph ~ pattern of entanglement across nodes

elementary quantum systems on nodes
Quantization of Systems with Constraints

Two dynamical models for full LQG
Outlook and Work in Progress

Hamiltonian formulation of GR
Relational Formalism: Observables & Evolution

Basis of Hkin

Spin network functions [Ashtekar, Isham, Lewandowski, Rovelli, Smolin ’90]
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Kristina Giesel Dynamics of LQG



one-body Hilbert space and quantum simplicial geometry

Hilbert space of 
quantum tetrahedron

quantum geometric operators 
act on this Hilbert space:

n4

j2

n2

j1
n1

j3
n3

j4
Ț

diagonalises area operator

diagonalises volume operator

phase space of classical geometries of a simplex

ܮ
ȭܮ=0

quantization

closure relation

spin network vertex

j = spin labelling irrep of SU(2)

Building block of quantum space as a spin network vertex:

(different perspective: spin networks from canonical quantization of GR in first order variables)

3D Euclidian space

SPIN NETWORK FORMALISM FOR QUANTUM SPACETIME

88

spin network vertex ~ quantum tetrahedron
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88

(in terms of SU(2) irreps)

note: other constructions using different algebraic data (e.g. SL(2,C) available
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(in terms of SU(2) irreps)

• encoding of discrete quantum geometry

e.g. area operator

e.g. volume operator
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(I({ji}))

note: other constructions using different algebraic data (e.g. SL(2,C) available
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(in terms of SU(2) irreps)

atoms of space:  
quantized tetrahedra 
(decorated with algebraic data)

Simple GFT condensates as homogeneous continuum geometries (not encoding any topological information)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)
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3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

•  simplest
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described by single collective wave function 
(depending on homogeneous anisotropic geometric data)
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' {continuum spatial geometries at a point} '
' minisuperspace of homogeneous geometries

Gielen, ‘14

GFT (condensate) cosmology

superposition of infinitely many spin networks dofs, 
“gas”of tetrahedra, all associated with same state 

• encoding of discrete quantum geometry

e.g. area operator

e.g. volume operator
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(I({ji}))

note: other constructions using different algebraic data (e.g. SL(2,C) available



gluing quantum tetrahedra
quantum states for simplicial 3-complexes = entangled many-body states of quantum tetrahedra
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Spin networks = graphs dual to simplicial complexes

▪ edges carrying SU(2) spins

▪ open edges carrying SU(2) magnetic indices

▪ nodes carrying intertwiners (gauge invariant tensors)

As kinematical states, spin networks enter* various related QG approaches:

• Loop quantum gravity (canonical quantization of general relativity)

• Spin foam models (covariant LQG or gravity as generalized lattice gauge theory)

• Group field theory (quantum field theory for simplicial geometry)

*with different Hilbert space structures for graph superposition!

SPIN NETWORK FORMALISM FOR QUANTUM SPACETIME

SPIN NETWORK GRAPHSIMPLICIAL COMLEX

9

simplicial complex ~ spin network graph

• QG graphs as entanglement patterns

gluing among QG atoms of space = invariance under SU(2) group action 
= maximal entanglement of link dofs

• can be enforced by "entangling map":

Wave-function associated to graphs

· Many-body wave-function for set of open vertices:  (..., gx
i , ..., g

y
j , ...)

· Gluing of vertices x and y along link of colour i :
Z

dh (..., gx
i h, ..., g

y
i h, ...) =  (..., gx

i g
y�1
i , ...)

Operator performing the gluing

Link map which entangles x and y along link i :

Px⌦y
i : Hx

i ⌦H
y
i ! Inv(Hx

i ⌦H
y
i ), Px⌦y

i
..=

Z
dhdgx

i dg
y
i |gx

i ihg
x
i h|⌦

��gy
i

↵⌦
gy
i h

��

2

which entangles x and y along link i - by tracing over SU(2) labels

• can generalize to arbitrary graph:

Construct states associated to graphs with arbitrary combinatorial pattern:

· Adjacency matrix A to codify the gluing(=entanglement) structure of a graph �:

Axy = 1 if vertex x is connected to vertex y , Axy = 0 otherwise.

· apply to many-particle state | i the link maps according to the given pattern

� ⌘ A:

| �i =
Y

Ai
xy=1

Px⌦y
i | i

! Prescription to construct in pre-F(H) = �
1
V=1HV quantum gravity states

associated to arbitrary graphs, which are characterized as patterns of entanglement

Remark:

for � ⌧ �0, h � | �0 i 6= 0 in general ! graphs do not underlie the definition of the

kinematical space (as happens in LQG), but are emergent (entanglement-)structures!

3

adjacency matrix of graph
"disconnected" state 
of N GFT quanta 
(spin network 
vertices ~ tetrahedra)

state associated to graph

B. Baytas, E. Bianchi, N. Tokomizo, '18; E. Colafranceschi, DO, '20
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adjacency matrix of graph
"disconnected" state 
of N GFT quanta 
(spin network 
vertices ~ tetrahedra)

state associated to graph

B. Baytas, E. Bianchi, N. Tokomizo, '18; E. Colafranceschi, DO, '20

Quantization of Systems with Constraints
Two dynamical models for full LQG

Outlook and Work in Progress

Hamiltonian formulation of GR
Relational Formalism: Observables & Evolution

Basis of Hkin

Spin network functions [Ashtekar, Isham, Lewandowski, Rovelli, Smolin ’90]
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Kristina Giesel Dynamics of LQG
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i-th and j-th indices, respectively, and 0 otherwise. In the following, we assume that vertices can be connected only
along edges of the same colour2. In terms of encoding of graphs into adjacency matrices, this implies (Avw)ij = 0 for
all i 6= j; we define aivw

..= (Avw)ii, and denote by L the set of internal links of the graph: L = {evwi |aivw = 1}.
A generic state associated to a graph � of V vertices can be constructed from a V -particle state |'i by gluing

vertices according to the combinatorial pattern A of �:

|'�i
..=

M

j1...jV

X

n1...nV

X

◆1...◆V

'{j1...jV }
{n1...nV }{◆1...◆V }

Y

ai
vw=1

�jvi ,jwi �nv
i ,n

w
i

O

v

|jvnv◆vi (5)

where jv ..= jv1...j
v
d, n

v ..= nv1...n
v
d and ◆v are the quantum numbers of vertex v, and |jn◆i are spin network basis states

with hg|jn◆i ..=  j
n◆(g) defined in Eq. (3); the Kronecker deltas impose maximal entanglement between semi-edges,

as a result of the projection of the V -particle state |'i into the link states defined in Eq. (4). The resulting graph
wave-function '� thus takes the form

'{j2�}
� {n2@�}{◆1...◆V } = '{j1...jV }

{n1...nV }{◆1...◆V }

Y

ai
vw=1

�jvi ,jwi �nv
i ,n

w
i

(6)

where @� denotes the set of boundary edges (seen as a subset of the edge set of �). Note that, in general, the V -
particle wave-function ' does not factorize over single-vertex states (though it can be expanded in the basis of open
spin network vertices). In the special case in which ' features such a factorization, its spin network expansion takes
the following form:

'{j1...jV }
{n1...nV }{◆1...◆V } =

VY

v=1

(fv)
jv

nv◆v (7)

where (fv)
jv

nv◆v is the wave-function associated to vertex v. In our analysis we will focus on graph states constructed
out of many-body wave-functions having this particular form; however, for the present discussion we do not assume
any specific form of ', which is therefore completely generic. Let us now focus on the degrees of freedom of a graph
state '� ; they are the following:

a. spins jvi and magnetic-numbers nv
i associated to the boundary edges evi 2 @�;

b. spins jvi associated to the internal links evwi 2 L;

c. intertwiner quantum numbers ◆1, ..., ◆V associated to the vertices.

The set a corresponds to the boundary degrees of freedom, while the sets b and c identify the bulk degrees of freedom;
in particular, the set b contains information on the combinatorial structure of the bulk and the dimension of the
internal links, while c can be interpreted as a set of “internal” degrees of freedom anchored to the vertices. From
the simplicial-geometry perspective, in fact, the intertwiner labels determine the volume of the simplices dual to the
graph vertices, while the spin labels determine information about areas of surfaces, dual to the graph edges, which
can be in the bulk or in the boundary. Since c is not independent from a and b, we cannot factorize the graph Hilbert
space into bulk and boundary Hilbert spaces. However, such a factorization is possible for a given assignment of spins
to the edges of the graph (or at least of its boundary), as we are going to show in the following section.

II. Entanglement graphs as bulk-to-boundary maps

In this section we show how one can use the quantum gravity states to define maps between their bulk and boundary
degrees of freedom, as defined above; for closely related recent work, see [55]. Although this feature holds for any
graph state, we specialize to quantum states with an almost factorized form of the wave-function, i.e. with individual
vertex contributions subject only to the entanglement contractions corresponding to the combinatorial pattern of the
graph to which it is associated. Therefore, our quantum states are themselves tensor networks, rather than generic
linear combinations of them (which is true for any quantum state in the GFT formalism). This will make more explicit
the possibility to regard entanglement graphs as maps on a bipartition of their degrees of freedom, similarly to what
happens for tensor network states/codes [56].

2 In the tensorial group field theory formalism, the addition of coloring and the consequent restrictions on the allowed combinatorics of
states and interactions is the key ingredient allowing control over their topology and, among many other results, the definition of large-N
approximations [62, 63].

spin network state 
on given graph:

• SN states = QG states in several related QG formalisms 
• canonical LQG 
• spin foam models 
• Tensorial Group Field Theory



• Primitive entanglement/connectivity (topology) correspondence: 


entanglement between entangled vertices = adjacency relations of dual simplices 

• Primitive entanglement/area correspondence:


link dual to surface shared by simplices; spin attached to link = eigenvalue of area operator of dual surface


local measure of entanglement prop. to D = dim(H_j) = 2j+1, thus prop. to surface area

• Primitive entanglement/volume correspondence:


vertex/simplex to gluing of links by gauge projection; intertwiner label = volume of simplex


local measure of entanglement prop to intertwiner label, thus prop to simplex volume

Entanglement/geometry correspondence
spacetime geometry (and, possibly, topology) from entanglement of fundamental quantum constituents

Van Raamsdonk, ’09, Swingle, ’10, ….

• "primitive" entanglement/geometry correspondence E. Colafranceschi, DO, '20

area operator

volume operator
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(I({ji}))

• graph underlying QG state = entanglement pattern:

Construct states associated to graphs with arbitrary combinatorial pattern:

· Adjacency matrix A to codify the gluing(=entanglement) structure of a graph �:

Axy = 1 if vertex x is connected to vertex y , Axy = 0 otherwise.

· apply to many-particle state | i the link maps according to the given pattern

� ⌘ A:

| �i =
Y

Ai
xy=1

Px⌦y
i | i

! Prescription to construct in pre-F(H) = �
1
V=1HV quantum gravity states

associated to arbitrary graphs, which are characterized as patterns of entanglement

Remark:

for � ⌧ �0, h � | �0 i 6= 0 in general ! graphs do not underlie the definition of the

kinematical space (as happens in LQG), but are emergent (entanglement-)structures!

3

adjacency matrix of graph
"disconnected" state 
of N quanta

state associated to graph



• Primitive entanglement/connectivity (topology) correspondence: 


entanglement between entangled vertices = adjacency relations of dual simplices 

• Primitive entanglement/area correspondence:


link dual to surface shared by simplices; spin attached to link = eigenvalue of area operator of dual surface


local measure of entanglement prop. to D = dim(H_j) = 2j+1, thus prop. to surface area

• Primitive entanglement/volume correspondence:


vertex/simplex to gluing of links by gauge projection; intertwiner label = volume of simplex


local measure of entanglement prop to intertwiner label, thus prop to simplex volume

Entanglement/geometry correspondence
spacetime geometry (and, possibly, topology) from entanglement of fundamental quantum constituents

Van Raamsdonk, ’09, Swingle, ’10, ….

• "primitive" entanglement/geometry correspondence E. Colafranceschi, DO, '20

area operator

volume operator
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(I({ji}))

• graph underlying QG state = entanglement pattern:

Construct states associated to graphs with arbitrary combinatorial pattern:

· Adjacency matrix A to codify the gluing(=entanglement) structure of a graph �:

Axy = 1 if vertex x is connected to vertex y , Axy = 0 otherwise.

· apply to many-particle state | i the link maps according to the given pattern

� ⌘ A:

| �i =
Y

Ai
xy=1

Px⌦y
i | i

! Prescription to construct in pre-F(H) = �
1
V=1HV quantum gravity states

associated to arbitrary graphs, which are characterized as patterns of entanglement

Remark:

for � ⌧ �0, h � | �0 i 6= 0 in general ! graphs do not underlie the definition of the

kinematical space (as happens in LQG), but are emergent (entanglement-)structures!

3

adjacency matrix of graph
"disconnected" state 
of N quanta

state associated to graph

• key for obtaining: • Ryu-Takanayagi entropy formula 
• holographic bulk-boundary maps 
• holographic boundary-boundary maps via random tensor-networks techniques

G. Chirco, DO, M. Zhang, '17; G. Chirco, E. Colafranceschi, DO, '21; 
E. Colafranceschi, S. Langenschedit, DO, '22



Quantum processes of atoms of space (~ quantum causal histories)

• possible process:  
set of "events" + order relations between (pairs of) them = 
directed graph

• simplicial geometric setting --> directed graph = 
dual 1-skeleton of oriented (simplicial) 4-complex

• irreflexive directed graph (no closed causal loops) = 
poset (causal set)

(simplicial complexes --> only 5-valent nodes)

•  for Lorentzian models, possible causal interpretation 
for order relations

• can be decomposed into building blocks ~ elementary "evolution" steps:

F. Markopoulou, '99; E. Livine, DO, '02; E. Hawkins, F. Markopoulou, H. Sahlmann, '03

• quantum theory: Hilbert spaces on links/edges (and tensor products 
for unordered (acausal) links)

• quantum dynamics: elementary "evolution" operators on nodes 
(+ additional "gluing" operators on links)
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Quantum "transition amplitudes" for QG processes - spin foam models (discrete gravity path integrals)

• quantum dynamics: assignment of quantum amplitude to 
each possible process (directed graph ~ cellular complex)

• amplitude associated to the whole spin foam complex):

Definition 2.6 (Spin foam model). A spin foam model is a quantum theory prescribed by the assignment
of a quadruple (Hp,MS,W,A) and defined by a partition function of the following form:

ZSF =
X

m2MS

W (m)A(m) (2.3)

Here Hp is the Hilbert space associated to each boundary patch of the atoms forming the molecule, A(m) is the
spin foam amplitude assigned to m by each given model and W (m) is a further weight factor in the sum over
all molecules. While A can be motivated, purely by considering the discretization and quantization of some
continuum (gravitational) theory the prescription for W (m) should come from a di↵erent line of reasoning.
For example, the GFT approach to spin foam models provides a field-theoretic prescription for both of them.

The quantum states for which spin foam models define probability amplitudes are associated to the boundary
graphs of spin foam molecules. The primary ingredient is the patch Hilbert space, denoted by Hp ⌘ Hv̄. One
can then associate an Hilbert space to each spin foam atom Ha and to each spin foam molecule Hm.

Ha = ⌦p2@aHp Hm = ⌦p2@mHp (2.4)

One might also want to define a single Hilbert space for a spin foam model, that would accomadate any possible
choice of boundary. This is indeed a crucial issue to tackle the continuum limit and relate the formalism to
canonical quantum gravity. From this point of view the simplest proposal is that of a (bosonic) Fock space.
This is a natural choice from a QFT/emergent-gravity perspective that sees quantum spacetime as a peculiar
quantum many-body system. Another possibility is to define a Hilbert space as the direct sum of all possible
graph Hilbert spaces. A third alternative is the one inspired by the canonical LQG construction based on the
imposition of cylindrical equivalence relations. A comprehensive discussion of these issues can be found in [51].
Let us now turn instead to the construction of the spin foam amplitudes themselves.

In order to specify the spinfoam amplitudes Am we need a set of operators defining maps between the various
boundary patches’ Hilbert spaces. The basic ones are the vertex and glueing operators.

Va : ⌦
p2@a

Hp �! Ha Va : ⌦
p2@a

Hp �! C (2.5)

Ke : Hp1 �! Hp2 Ke : Hp1 ⌦Hp2 �! C (2.6)

The associated functions Va and Ke, called the vertex and glueing kernels, give, when applied to any basis
in the Hilbert spaces Hp, the generalised ”matrix elements” of the corresponding operators. The general
formula of the spin foam amplitude for a generic molecule, depending on its combinatorial structure, i.e. the
connectivity pattern between spin foam atoms and their subcells, is given by:

A(m) = Trp2m

0

@
Y

e|m

Ke

Y

a2m

Va

1

A (2.7)

The trace is evaluated over a complete basis in each of the shared patch Hilbert spaces (producing the convo-
lution of the corresponding functions). Following the gluing pattern e↵ected by the gluing maps, one identifies
a closed cycle and thus a spin foam face associated to the same patch (for internal patches). Thus the final
spin foam amplitude can also be written in terms of individual contributions associated to the faces, edges and
vertices of the spin foam molecule. Last these amplitudes, together with an additional combinatorial factor,
can be recovered as the perturbative Feynman amplitudes of a Group field theory whose propagator and the
interaction kernels are the same gluing and vertex kernels of the corresponding (dual) spin foam model [9, 47].

3 Spin foam models for constrained BF theory.

Having given the general definitions, let us now focus on the class of gravitational or geometrical Riemannian
spin foam models arising from the Holst-Plebanski formulation of General Relativity in 4d [52]. From now on
we restric ourselves to simplicial structures. Extensions to the Lorentzian context and to arbitrary cellular
complexes can be found in the literature [1, 47, 48]. In this section, we emphatize and illustrate two points:
the construction ambiguities and the universal structure of the resulting amplitudes.
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• different quantum gravity models (spin foam, LQG, lattice path integrals, TGFT) = different choices of elementary 
operators (and Hilbert spaces)

• sum over histories: complete spin foam model given by sum over all complexes/processes (within chosen class):

then generalised to the presence of boundary data
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Spin foam models: general structure

• the assignment of group-theoretic data can be seen as association of Hilbert spaces to spin foam structures, 
with the basic object being the Hilbert space associated to boundary patches, which induces a Hilbert space 
for the spin foam atom:

Definition 2.6 (Spin foam model). A spin foam model is a quantum theory prescribed by the assignment
of a quadruple (Hp,MS,W,A) and defined by a partition function of the following form:

ZSF =
X

m2MS

W (m)A(m) (2.3)

Here Hp is the Hilbert space associated to each boundary patch of the atoms forming the molecule, A(m) is the
spin foam amplitude assigned to m by each given model and W (m) is a further weight factor in the sum over
all molecules. While A can be motivated, purely by considering the discretization and quantization of some
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graphs of spin foam molecules. The primary ingredient is the patch Hilbert space, denoted by Hp ⌘ Hv̄. One
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One might also want to define a single Hilbert space for a spin foam model, that would accomadate any possible
choice of boundary. This is indeed a crucial issue to tackle the continuum limit and relate the formalism to
canonical quantum gravity. From this point of view the simplest proposal is that of a (bosonic) Fock space.
This is a natural choice from a QFT/emergent-gravity perspective that sees quantum spacetime as a peculiar
quantum many-body system. Another possibility is to define a Hilbert space as the direct sum of all possible
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where the trace is defined over any complete basis in the Hilbert space of of each boundary patch
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Figure 1. A spin foam atom (on the right) and its bisected boundary graph (on the left).

An example of spin foam atom is illustrated in Fig. 1. With respect to the picture the set Va is made by the
bulk black vertex v together with all the nodes (v̄ in red and ṽ in blue) of the atom’s boundary graph belonging
to Vb. The set E contains the red edges connecting the five red nodes v̄ to the black vertex v. Thus the full
atom edge set Ea consists of the five red edges together with all the green half-links of the atom’s boundary
graph (which are elelments of Eb). With respect to the picture (Fig. 1) all the spin foam atom’s faces are cycles
made by four distinct vertices (vv̄ṽv̄0) and by the edges connecting them. For example one face is identified
by the black vertex, the two red nodes on the bottom and on the right, the blue node on the bottom right
corner and the half-edges joining them (note however that not all faces have been drawed in the picture).

Summarizing a spin foam atoms is the 2-skeleton of the dual polytope of a d-dimensional fundamental cell,
e.g. the dual 2-skeleton of a 4-simplex in the four-dimensional simplicial case. Moreover, as argued in [47], the
set A of atoms to be catalogued by the set B of bisected boundary graphs.

Definition 2.4 (Spin foam molecule). A spin foam molecule m 2 M is a triple of vertices, edges and faces
m =

�
Vm, Em,Fm) = (

S
a Va/� ,

S
a Ea/� ,

S
a Fa/�

�
constructed from a set of spin foam atoms quotiented by a set

of gluing maps enforcing the bonding relations between the atoms forming the molecule.

�

]�

Figure 2. The gluing of two atoms along a shared boundary patch to form a molecule.

Definition 2.5 (n-simplicial structures). The set of n-simplicial molecules MS consists of all molecules
obtained as gluings of a single (simplicial) atom aS labelled by the complete graph with n+ 1 vertices Kn+1.

Notice that we call simplicial, the above-defined spin foam molecules because each spin foam atom in itself
can be canonically understood as the dual 2-skeleton of an n-simplex1. However, this can be done only locally;
it has been proven that not every simplicial spin foam molecule can be associated uniquely to a well-defined
simplicial complex, as its dual 2-skeleton [50]. While the restriction to simplicial structures is motivated (in
addition to simplicity) by the greater geometric understanding of the corresponding models with respect to
those based on non-simplicial complexes, we stress that they remain a special case of a more general formalism.
The use of arbitrary cellular complexes is suggested by canonical LQG [48] and can also be accommodated in
the GFT formulation of spin foam models [47], using techniques from dually weighted tensor models.

1
In combinatorics an finite abstract k-simplicial complex C (e.g. an abstract k-simplex) is a collection of subsets � of a set of

vertices C0 = {v1, . . . , vn} such that the following two properties are satisfied:

1. For all � 2 C and �0 ⇢ � then �0 2 C.

2. If �, �0 2 C then � [ �0 2 C.
All subsets of cardinality p + 1 are called p-simplices �p 2 Cp. The dimension k of C is defined as the maximal cardinality of

simplices in C. From a topological point of view a k-simplex is the convex hull of a set of k+1 a�nely independent points in Rk
.
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Spin foam models: general structure

• the assignment of group-theoretic data can be seen as association of Hilbert spaces to spin foam structures, 
with the basic object being the Hilbert space associated to boundary patches, which induces a Hilbert space 
for the spin foam atom:

Definition 2.6 (Spin foam model). A spin foam model is a quantum theory prescribed by the assignment
of a quadruple (Hp,MS,W,A) and defined by a partition function of the following form:

ZSF =
X

m2MS

W (m)A(m) (2.3)

Here Hp is the Hilbert space associated to each boundary patch of the atoms forming the molecule, A(m) is the
spin foam amplitude assigned to m by each given model and W (m) is a further weight factor in the sum over
all molecules. While A can be motivated, purely by considering the discretization and quantization of some
continuum (gravitational) theory the prescription for W (m) should come from a di↵erent line of reasoning.
For example, the GFT approach to spin foam models provides a field-theoretic prescription for both of them.

The quantum states for which spin foam models define probability amplitudes are associated to the boundary
graphs of spin foam molecules. The primary ingredient is the patch Hilbert space, denoted by Hp ⌘ Hv̄. One
can then associate an Hilbert space to each spin foam atom Ha and to each spin foam molecule Hm.

Ha = ⌦p2@aHp Hm = ⌦p2@mHp (2.4)

One might also want to define a single Hilbert space for a spin foam model, that would accomadate any possible
choice of boundary. This is indeed a crucial issue to tackle the continuum limit and relate the formalism to
canonical quantum gravity. From this point of view the simplest proposal is that of a (bosonic) Fock space.
This is a natural choice from a QFT/emergent-gravity perspective that sees quantum spacetime as a peculiar
quantum many-body system. Another possibility is to define a Hilbert space as the direct sum of all possible
graph Hilbert spaces. A third alternative is the one inspired by the canonical LQG construction based on the
imposition of cylindrical equivalence relations. A comprehensive discussion of these issues can be found in [51].
Let us now turn instead to the construction of the spin foam amplitudes themselves.

In order to specify the spinfoam amplitudes Am we need a set of operators defining maps between the various
boundary patches’ Hilbert spaces. The basic ones are the vertex and glueing operators.
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The associated functions Va and Ke, called the vertex and glueing kernels, give, when applied to any basis
in the Hilbert spaces Hp, the generalised ”matrix elements” of the corresponding operators. The general
formula of the spin foam amplitude for a generic molecule, depending on its combinatorial structure, i.e. the
connectivity pattern between spin foam atoms and their subcells, is given by:

A(m) = Trp2m
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The trace is evaluated over a complete basis in each of the shared patch Hilbert spaces (producing the convo-
lution of the corresponding functions). Following the gluing pattern e↵ected by the gluing maps, one identifies
a closed cycle and thus a spin foam face associated to the same patch (for internal patches). Thus the final
spin foam amplitude can also be written in terms of individual contributions associated to the faces, edges and
vertices of the spin foam molecule. Last these amplitudes, together with an additional combinatorial factor,
can be recovered as the perturbative Feynman amplitudes of a Group field theory whose propagator and the
interaction kernels are the same gluing and vertex kernels of the corresponding (dual) spin foam model [9, 47].
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note: the kernels are functions of all boundary data, identifying vectors in the boundary Hilbert spaces

• the amplitude associated to the whole spin foam molecule 
(spin foam 2-complex) is then defined as:

Definition 2.6 (Spin foam model). A spin foam model is a quantum theory prescribed by the assignment
of a quadruple (Hp,MS,W,A) and defined by a partition function of the following form:

ZSF =
X

m2MS

W (m)A(m) (2.3)

Here Hp is the Hilbert space associated to each boundary patch of the atoms forming the molecule, A(m) is the
spin foam amplitude assigned to m by each given model and W (m) is a further weight factor in the sum over
all molecules. While A can be motivated, purely by considering the discretization and quantization of some
continuum (gravitational) theory the prescription for W (m) should come from a di↵erent line of reasoning.
For example, the GFT approach to spin foam models provides a field-theoretic prescription for both of them.

The quantum states for which spin foam models define probability amplitudes are associated to the boundary
graphs of spin foam molecules. The primary ingredient is the patch Hilbert space, denoted by Hp ⌘ Hv̄. One
can then associate an Hilbert space to each spin foam atom Ha and to each spin foam molecule Hm.

Ha = ⌦p2@aHp Hm = ⌦p2@mHp (2.4)

One might also want to define a single Hilbert space for a spin foam model, that would accomadate any possible
choice of boundary. This is indeed a crucial issue to tackle the continuum limit and relate the formalism to
canonical quantum gravity. From this point of view the simplest proposal is that of a (bosonic) Fock space.
This is a natural choice from a QFT/emergent-gravity perspective that sees quantum spacetime as a peculiar
quantum many-body system. Another possibility is to define a Hilbert space as the direct sum of all possible
graph Hilbert spaces. A third alternative is the one inspired by the canonical LQG construction based on the
imposition of cylindrical equivalence relations. A comprehensive discussion of these issues can be found in [51].
Let us now turn instead to the construction of the spin foam amplitudes themselves.

In order to specify the spinfoam amplitudes Am we need a set of operators defining maps between the various
boundary patches’ Hilbert spaces. The basic ones are the vertex and glueing operators.
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The associated functions Va and Ke, called the vertex and glueing kernels, give, when applied to any basis
in the Hilbert spaces Hp, the generalised ”matrix elements” of the corresponding operators. The general
formula of the spin foam amplitude for a generic molecule, depending on its combinatorial structure, i.e. the
connectivity pattern between spin foam atoms and their subcells, is given by:
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The trace is evaluated over a complete basis in each of the shared patch Hilbert spaces (producing the convo-
lution of the corresponding functions). Following the gluing pattern e↵ected by the gluing maps, one identifies
a closed cycle and thus a spin foam face associated to the same patch (for internal patches). Thus the final
spin foam amplitude can also be written in terms of individual contributions associated to the faces, edges and
vertices of the spin foam molecule. Last these amplitudes, together with an additional combinatorial factor,
can be recovered as the perturbative Feynman amplitudes of a Group field theory whose propagator and the
interaction kernels are the same gluing and vertex kernels of the corresponding (dual) spin foam model [9, 47].
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where the trace is defined over any complete basis in the Hilbert space of of each boundary patch
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Figure 1. A spin foam atom (on the right) and its bisected boundary graph (on the left).

An example of spin foam atom is illustrated in Fig. 1. With respect to the picture the set Va is made by the
bulk black vertex v together with all the nodes (v̄ in red and ṽ in blue) of the atom’s boundary graph belonging
to Vb. The set E contains the red edges connecting the five red nodes v̄ to the black vertex v. Thus the full
atom edge set Ea consists of the five red edges together with all the green half-links of the atom’s boundary
graph (which are elelments of Eb). With respect to the picture (Fig. 1) all the spin foam atom’s faces are cycles
made by four distinct vertices (vv̄ṽv̄0) and by the edges connecting them. For example one face is identified
by the black vertex, the two red nodes on the bottom and on the right, the blue node on the bottom right
corner and the half-edges joining them (note however that not all faces have been drawed in the picture).

Summarizing a spin foam atoms is the 2-skeleton of the dual polytope of a d-dimensional fundamental cell,
e.g. the dual 2-skeleton of a 4-simplex in the four-dimensional simplicial case. Moreover, as argued in [47], the
set A of atoms to be catalogued by the set B of bisected boundary graphs.

Definition 2.4 (Spin foam molecule). A spin foam molecule m 2 M is a triple of vertices, edges and faces
m =

�
Vm, Em,Fm) = (

S
a Va/� ,

S
a Ea/� ,

S
a Fa/�

�
constructed from a set of spin foam atoms quotiented by a set

of gluing maps enforcing the bonding relations between the atoms forming the molecule.

�

]�

Figure 2. The gluing of two atoms along a shared boundary patch to form a molecule.

Definition 2.5 (n-simplicial structures). The set of n-simplicial molecules MS consists of all molecules
obtained as gluings of a single (simplicial) atom aS labelled by the complete graph with n+ 1 vertices Kn+1.

Notice that we call simplicial, the above-defined spin foam molecules because each spin foam atom in itself
can be canonically understood as the dual 2-skeleton of an n-simplex1. However, this can be done only locally;
it has been proven that not every simplicial spin foam molecule can be associated uniquely to a well-defined
simplicial complex, as its dual 2-skeleton [50]. While the restriction to simplicial structures is motivated (in
addition to simplicity) by the greater geometric understanding of the corresponding models with respect to
those based on non-simplicial complexes, we stress that they remain a special case of a more general formalism.
The use of arbitrary cellular complexes is suggested by canonical LQG [48] and can also be accommodated in
the GFT formulation of spin foam models [47], using techniques from dually weighted tensor models.

1
In combinatorics an finite abstract k-simplicial complex C (e.g. an abstract k-simplex) is a collection of subsets � of a set of

vertices C0 = {v1, . . . , vn} such that the following two properties are satisfied:

1. For all � 2 C and �0 ⇢ � then �0 2 C.

2. If �, �0 2 C then � [ �0 2 C.
All subsets of cardinality p + 1 are called p-simplices �p 2 Cp. The dimension k of C is defined as the maximal cardinality of

simplices in C. From a topological point of view a k-simplex is the convex hull of a set of k+1 a�nely independent points in Rk
.
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Spin foam models: general structure

• the assignment of group-theoretic data can be seen as association of Hilbert spaces to spin foam structures, 
with the basic object being the Hilbert space associated to boundary patches, which induces a Hilbert space 
for the spin foam atom:

Definition 2.6 (Spin foam model). A spin foam model is a quantum theory prescribed by the assignment
of a quadruple (Hp,MS,W,A) and defined by a partition function of the following form:

ZSF =
X

m2MS

W (m)A(m) (2.3)

Here Hp is the Hilbert space associated to each boundary patch of the atoms forming the molecule, A(m) is the
spin foam amplitude assigned to m by each given model and W (m) is a further weight factor in the sum over
all molecules. While A can be motivated, purely by considering the discretization and quantization of some
continuum (gravitational) theory the prescription for W (m) should come from a di↵erent line of reasoning.
For example, the GFT approach to spin foam models provides a field-theoretic prescription for both of them.

The quantum states for which spin foam models define probability amplitudes are associated to the boundary
graphs of spin foam molecules. The primary ingredient is the patch Hilbert space, denoted by Hp ⌘ Hv̄. One
can then associate an Hilbert space to each spin foam atom Ha and to each spin foam molecule Hm.

Ha = ⌦p2@aHp Hm = ⌦p2@mHp (2.4)

One might also want to define a single Hilbert space for a spin foam model, that would accomadate any possible
choice of boundary. This is indeed a crucial issue to tackle the continuum limit and relate the formalism to
canonical quantum gravity. From this point of view the simplest proposal is that of a (bosonic) Fock space.
This is a natural choice from a QFT/emergent-gravity perspective that sees quantum spacetime as a peculiar
quantum many-body system. Another possibility is to define a Hilbert space as the direct sum of all possible
graph Hilbert spaces. A third alternative is the one inspired by the canonical LQG construction based on the
imposition of cylindrical equivalence relations. A comprehensive discussion of these issues can be found in [51].
Let us now turn instead to the construction of the spin foam amplitudes themselves.

In order to specify the spinfoam amplitudes Am we need a set of operators defining maps between the various
boundary patches’ Hilbert spaces. The basic ones are the vertex and glueing operators.

Va : ⌦
p2@a

Hp �! Ha Va : ⌦
p2@a

Hp �! C (2.5)

Ke : Hp1 �! Hp2 Ke : Hp1 ⌦Hp2 �! C (2.6)

The associated functions Va and Ke, called the vertex and glueing kernels, give, when applied to any basis
in the Hilbert spaces Hp, the generalised ”matrix elements” of the corresponding operators. The general
formula of the spin foam amplitude for a generic molecule, depending on its combinatorial structure, i.e. the
connectivity pattern between spin foam atoms and their subcells, is given by:

A(m) = Trp2m
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The trace is evaluated over a complete basis in each of the shared patch Hilbert spaces (producing the convo-
lution of the corresponding functions). Following the gluing pattern e↵ected by the gluing maps, one identifies
a closed cycle and thus a spin foam face associated to the same patch (for internal patches). Thus the final
spin foam amplitude can also be written in terms of individual contributions associated to the faces, edges and
vertices of the spin foam molecule. Last these amplitudes, together with an additional combinatorial factor,
can be recovered as the perturbative Feynman amplitudes of a Group field theory whose propagator and the
interaction kernels are the same gluing and vertex kernels of the corresponding (dual) spin foam model [9, 47].

3 Spin foam models for constrained BF theory.

Having given the general definitions, let us now focus on the class of gravitational or geometrical Riemannian
spin foam models arising from the Holst-Plebanski formulation of General Relativity in 4d [52]. From now on
we restric ourselves to simplicial structures. Extensions to the Lorentzian context and to arbitrary cellular
complexes can be found in the literature [1, 47, 48]. In this section, we emphatize and illustrate two points:
the construction ambiguities and the universal structure of the resulting amplitudes.
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and for the spin foam molecule

Definition 2.6 (Spin foam model). A spin foam model is a quantum theory prescribed by the assignment
of a quadruple (Hp,MS,W,A) and defined by a partition function of the following form:
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Here Hp is the Hilbert space associated to each boundary patch of the atoms forming the molecule, A(m) is the
spin foam amplitude assigned to m by each given model and W (m) is a further weight factor in the sum over
all molecules. While A can be motivated, purely by considering the discretization and quantization of some
continuum (gravitational) theory the prescription for W (m) should come from a di↵erent line of reasoning.
For example, the GFT approach to spin foam models provides a field-theoretic prescription for both of them.

The quantum states for which spin foam models define probability amplitudes are associated to the boundary
graphs of spin foam molecules. The primary ingredient is the patch Hilbert space, denoted by Hp ⌘ Hv̄. One
can then associate an Hilbert space to each spin foam atom Ha and to each spin foam molecule Hm.

Ha = ⌦p2@aHp Hm = ⌦p2@mHp (2.4)

One might also want to define a single Hilbert space for a spin foam model, that would accomadate any possible
choice of boundary. This is indeed a crucial issue to tackle the continuum limit and relate the formalism to
canonical quantum gravity. From this point of view the simplest proposal is that of a (bosonic) Fock space.
This is a natural choice from a QFT/emergent-gravity perspective that sees quantum spacetime as a peculiar
quantum many-body system. Another possibility is to define a Hilbert space as the direct sum of all possible
graph Hilbert spaces. A third alternative is the one inspired by the canonical LQG construction based on the
imposition of cylindrical equivalence relations. A comprehensive discussion of these issues can be found in [51].
Let us now turn instead to the construction of the spin foam amplitudes themselves.

In order to specify the spinfoam amplitudes Am we need a set of operators defining maps between the various
boundary patches’ Hilbert spaces. The basic ones are the vertex and glueing operators.
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p2@a

Hp �! Ha Va : ⌦
p2@a

Hp �! C (2.5)
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The associated functions Va and Ke, called the vertex and glueing kernels, give, when applied to any basis
in the Hilbert spaces Hp, the generalised ”matrix elements” of the corresponding operators. The general
formula of the spin foam amplitude for a generic molecule, depending on its combinatorial structure, i.e. the
connectivity pattern between spin foam atoms and their subcells, is given by:
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The trace is evaluated over a complete basis in each of the shared patch Hilbert spaces (producing the convo-
lution of the corresponding functions). Following the gluing pattern e↵ected by the gluing maps, one identifies
a closed cycle and thus a spin foam face associated to the same patch (for internal patches). Thus the final
spin foam amplitude can also be written in terms of individual contributions associated to the faces, edges and
vertices of the spin foam molecule. Last these amplitudes, together with an additional combinatorial factor,
can be recovered as the perturbative Feynman amplitudes of a Group field theory whose propagator and the
interaction kernels are the same gluing and vertex kernels of the corresponding (dual) spin foam model [9, 47].

3 Spin foam models for constrained BF theory.

Having given the general definitions, let us now focus on the class of gravitational or geometrical Riemannian
spin foam models arising from the Holst-Plebanski formulation of General Relativity in 4d [52]. From now on
we restric ourselves to simplicial structures. Extensions to the Lorentzian context and to arbitrary cellular
complexes can be found in the literature [1, 47, 48]. In this section, we emphatize and illustrate two points:
the construction ambiguities and the universal structure of the resulting amplitudes.
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note: these patch Hilbert spaces can be the starting point for the definition of a Hilbert space that 
accommodates any choice of boundary graphs. Doing so, one sets the way to study sums and /or 
refinements of spin foam complexes. There are several ways to do so, e.g. 1) take the direct sum 
over all possible boundary graphs; 2) construct from it a Fock space (leading to a group field 
theory formulation of spin foam models).

• based on such Hilbert spaces, one defines "vertex kernels" and "gluing kernels", 
associated to spin foam atoms and bonding maps (thus, pairs of patches):

Definition 2.6 (Spin foam model). A spin foam model is a quantum theory prescribed by the assignment
of a quadruple (Hp,MS,W,A) and defined by a partition function of the following form:
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W (m)A(m) (2.3)

Here Hp is the Hilbert space associated to each boundary patch of the atoms forming the molecule, A(m) is the
spin foam amplitude assigned to m by each given model and W (m) is a further weight factor in the sum over
all molecules. While A can be motivated, purely by considering the discretization and quantization of some
continuum (gravitational) theory the prescription for W (m) should come from a di↵erent line of reasoning.
For example, the GFT approach to spin foam models provides a field-theoretic prescription for both of them.

The quantum states for which spin foam models define probability amplitudes are associated to the boundary
graphs of spin foam molecules. The primary ingredient is the patch Hilbert space, denoted by Hp ⌘ Hv̄. One
can then associate an Hilbert space to each spin foam atom Ha and to each spin foam molecule Hm.

Ha = ⌦p2@aHp Hm = ⌦p2@mHp (2.4)

One might also want to define a single Hilbert space for a spin foam model, that would accomadate any possible
choice of boundary. This is indeed a crucial issue to tackle the continuum limit and relate the formalism to
canonical quantum gravity. From this point of view the simplest proposal is that of a (bosonic) Fock space.
This is a natural choice from a QFT/emergent-gravity perspective that sees quantum spacetime as a peculiar
quantum many-body system. Another possibility is to define a Hilbert space as the direct sum of all possible
graph Hilbert spaces. A third alternative is the one inspired by the canonical LQG construction based on the
imposition of cylindrical equivalence relations. A comprehensive discussion of these issues can be found in [51].
Let us now turn instead to the construction of the spin foam amplitudes themselves.

In order to specify the spinfoam amplitudes Am we need a set of operators defining maps between the various
boundary patches’ Hilbert spaces. The basic ones are the vertex and glueing operators.
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The associated functions Va and Ke, called the vertex and glueing kernels, give, when applied to any basis
in the Hilbert spaces Hp, the generalised ”matrix elements” of the corresponding operators. The general
formula of the spin foam amplitude for a generic molecule, depending on its combinatorial structure, i.e. the
connectivity pattern between spin foam atoms and their subcells, is given by:
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The trace is evaluated over a complete basis in each of the shared patch Hilbert spaces (producing the convo-
lution of the corresponding functions). Following the gluing pattern e↵ected by the gluing maps, one identifies
a closed cycle and thus a spin foam face associated to the same patch (for internal patches). Thus the final
spin foam amplitude can also be written in terms of individual contributions associated to the faces, edges and
vertices of the spin foam molecule. Last these amplitudes, together with an additional combinatorial factor,
can be recovered as the perturbative Feynman amplitudes of a Group field theory whose propagator and the
interaction kernels are the same gluing and vertex kernels of the corresponding (dual) spin foam model [9, 47].
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note: the kernels are functions of all boundary data, identifying vectors in the boundary Hilbert spaces

• the amplitude associated to the whole spin foam molecule 
(spin foam 2-complex) is then defined as:

Definition 2.6 (Spin foam model). A spin foam model is a quantum theory prescribed by the assignment
of a quadruple (Hp,MS,W,A) and defined by a partition function of the following form:

ZSF =
X

m2MS

W (m)A(m) (2.3)

Here Hp is the Hilbert space associated to each boundary patch of the atoms forming the molecule, A(m) is the
spin foam amplitude assigned to m by each given model and W (m) is a further weight factor in the sum over
all molecules. While A can be motivated, purely by considering the discretization and quantization of some
continuum (gravitational) theory the prescription for W (m) should come from a di↵erent line of reasoning.
For example, the GFT approach to spin foam models provides a field-theoretic prescription for both of them.

The quantum states for which spin foam models define probability amplitudes are associated to the boundary
graphs of spin foam molecules. The primary ingredient is the patch Hilbert space, denoted by Hp ⌘ Hv̄. One
can then associate an Hilbert space to each spin foam atom Ha and to each spin foam molecule Hm.

Ha = ⌦p2@aHp Hm = ⌦p2@mHp (2.4)

One might also want to define a single Hilbert space for a spin foam model, that would accomadate any possible
choice of boundary. This is indeed a crucial issue to tackle the continuum limit and relate the formalism to
canonical quantum gravity. From this point of view the simplest proposal is that of a (bosonic) Fock space.
This is a natural choice from a QFT/emergent-gravity perspective that sees quantum spacetime as a peculiar
quantum many-body system. Another possibility is to define a Hilbert space as the direct sum of all possible
graph Hilbert spaces. A third alternative is the one inspired by the canonical LQG construction based on the
imposition of cylindrical equivalence relations. A comprehensive discussion of these issues can be found in [51].
Let us now turn instead to the construction of the spin foam amplitudes themselves.

In order to specify the spinfoam amplitudes Am we need a set of operators defining maps between the various
boundary patches’ Hilbert spaces. The basic ones are the vertex and glueing operators.
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The associated functions Va and Ke, called the vertex and glueing kernels, give, when applied to any basis
in the Hilbert spaces Hp, the generalised ”matrix elements” of the corresponding operators. The general
formula of the spin foam amplitude for a generic molecule, depending on its combinatorial structure, i.e. the
connectivity pattern between spin foam atoms and their subcells, is given by:
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The trace is evaluated over a complete basis in each of the shared patch Hilbert spaces (producing the convo-
lution of the corresponding functions). Following the gluing pattern e↵ected by the gluing maps, one identifies
a closed cycle and thus a spin foam face associated to the same patch (for internal patches). Thus the final
spin foam amplitude can also be written in terms of individual contributions associated to the faces, edges and
vertices of the spin foam molecule. Last these amplitudes, together with an additional combinatorial factor,
can be recovered as the perturbative Feynman amplitudes of a Group field theory whose propagator and the
interaction kernels are the same gluing and vertex kernels of the corresponding (dual) spin foam model [9, 47].
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where the trace is defined over any complete basis in the Hilbert space of of each boundary patch
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Figure 1. A spin foam atom (on the right) and its bisected boundary graph (on the left).

An example of spin foam atom is illustrated in Fig. 1. With respect to the picture the set Va is made by the
bulk black vertex v together with all the nodes (v̄ in red and ṽ in blue) of the atom’s boundary graph belonging
to Vb. The set E contains the red edges connecting the five red nodes v̄ to the black vertex v. Thus the full
atom edge set Ea consists of the five red edges together with all the green half-links of the atom’s boundary
graph (which are elelments of Eb). With respect to the picture (Fig. 1) all the spin foam atom’s faces are cycles
made by four distinct vertices (vv̄ṽv̄0) and by the edges connecting them. For example one face is identified
by the black vertex, the two red nodes on the bottom and on the right, the blue node on the bottom right
corner and the half-edges joining them (note however that not all faces have been drawed in the picture).

Summarizing a spin foam atoms is the 2-skeleton of the dual polytope of a d-dimensional fundamental cell,
e.g. the dual 2-skeleton of a 4-simplex in the four-dimensional simplicial case. Moreover, as argued in [47], the
set A of atoms to be catalogued by the set B of bisected boundary graphs.

Definition 2.4 (Spin foam molecule). A spin foam molecule m 2 M is a triple of vertices, edges and faces
m =
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Vm, Em,Fm) = (
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a Va/� ,

S
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constructed from a set of spin foam atoms quotiented by a set

of gluing maps enforcing the bonding relations between the atoms forming the molecule.
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Figure 2. The gluing of two atoms along a shared boundary patch to form a molecule.

Definition 2.5 (n-simplicial structures). The set of n-simplicial molecules MS consists of all molecules
obtained as gluings of a single (simplicial) atom aS labelled by the complete graph with n+ 1 vertices Kn+1.

Notice that we call simplicial, the above-defined spin foam molecules because each spin foam atom in itself
can be canonically understood as the dual 2-skeleton of an n-simplex1. However, this can be done only locally;
it has been proven that not every simplicial spin foam molecule can be associated uniquely to a well-defined
simplicial complex, as its dual 2-skeleton [50]. While the restriction to simplicial structures is motivated (in
addition to simplicity) by the greater geometric understanding of the corresponding models with respect to
those based on non-simplicial complexes, we stress that they remain a special case of a more general formalism.
The use of arbitrary cellular complexes is suggested by canonical LQG [48] and can also be accommodated in
the GFT formulation of spin foam models [47], using techniques from dually weighted tensor models.

1
In combinatorics an finite abstract k-simplicial complex C (e.g. an abstract k-simplex) is a collection of subsets � of a set of

vertices C0 = {v1, . . . , vn} such that the following two properties are satisfied:

1. For all � 2 C and �0 ⇢ � then �0 2 C.

2. If �, �0 2 C then � [ �0 2 C.
All subsets of cardinality p + 1 are called p-simplices �p 2 Cp. The dimension k of C is defined as the maximal cardinality of

simplices in C. From a topological point of view a k-simplex is the convex hull of a set of k+1 a�nely independent points in Rk
.
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• most models constructed to have good simplicial geometry interpretations: amplitudes ~ lattice gravity path integral

Z =
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Spin foam models: general structure

• the assignment of group-theoretic data can be seen as association of Hilbert spaces to spin foam structures, 
with the basic object being the Hilbert space associated to boundary patches, which induces a Hilbert space 
for the spin foam atom:

Definition 2.6 (Spin foam model). A spin foam model is a quantum theory prescribed by the assignment
of a quadruple (Hp,MS,W,A) and defined by a partition function of the following form:

ZSF =
X

m2MS

W (m)A(m) (2.3)

Here Hp is the Hilbert space associated to each boundary patch of the atoms forming the molecule, A(m) is the
spin foam amplitude assigned to m by each given model and W (m) is a further weight factor in the sum over
all molecules. While A can be motivated, purely by considering the discretization and quantization of some
continuum (gravitational) theory the prescription for W (m) should come from a di↵erent line of reasoning.
For example, the GFT approach to spin foam models provides a field-theoretic prescription for both of them.

The quantum states for which spin foam models define probability amplitudes are associated to the boundary
graphs of spin foam molecules. The primary ingredient is the patch Hilbert space, denoted by Hp ⌘ Hv̄. One
can then associate an Hilbert space to each spin foam atom Ha and to each spin foam molecule Hm.

Ha = ⌦p2@aHp Hm = ⌦p2@mHp (2.4)

One might also want to define a single Hilbert space for a spin foam model, that would accomadate any possible
choice of boundary. This is indeed a crucial issue to tackle the continuum limit and relate the formalism to
canonical quantum gravity. From this point of view the simplest proposal is that of a (bosonic) Fock space.
This is a natural choice from a QFT/emergent-gravity perspective that sees quantum spacetime as a peculiar
quantum many-body system. Another possibility is to define a Hilbert space as the direct sum of all possible
graph Hilbert spaces. A third alternative is the one inspired by the canonical LQG construction based on the
imposition of cylindrical equivalence relations. A comprehensive discussion of these issues can be found in [51].
Let us now turn instead to the construction of the spin foam amplitudes themselves.

In order to specify the spinfoam amplitudes Am we need a set of operators defining maps between the various
boundary patches’ Hilbert spaces. The basic ones are the vertex and glueing operators.
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The associated functions Va and Ke, called the vertex and glueing kernels, give, when applied to any basis
in the Hilbert spaces Hp, the generalised ”matrix elements” of the corresponding operators. The general
formula of the spin foam amplitude for a generic molecule, depending on its combinatorial structure, i.e. the
connectivity pattern between spin foam atoms and their subcells, is given by:
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The trace is evaluated over a complete basis in each of the shared patch Hilbert spaces (producing the convo-
lution of the corresponding functions). Following the gluing pattern e↵ected by the gluing maps, one identifies
a closed cycle and thus a spin foam face associated to the same patch (for internal patches). Thus the final
spin foam amplitude can also be written in terms of individual contributions associated to the faces, edges and
vertices of the spin foam molecule. Last these amplitudes, together with an additional combinatorial factor,
can be recovered as the perturbative Feynman amplitudes of a Group field theory whose propagator and the
interaction kernels are the same gluing and vertex kernels of the corresponding (dual) spin foam model [9, 47].

3 Spin foam models for constrained BF theory.

Having given the general definitions, let us now focus on the class of gravitational or geometrical Riemannian
spin foam models arising from the Holst-Plebanski formulation of General Relativity in 4d [52]. From now on
we restric ourselves to simplicial structures. Extensions to the Lorentzian context and to arbitrary cellular
complexes can be found in the literature [1, 47, 48]. In this section, we emphatize and illustrate two points:
the construction ambiguities and the universal structure of the resulting amplitudes.
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where the trace is defined over any complete basis in the Hilbert space of of each boundary patch
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Figure 1. A spin foam atom (on the right) and its bisected boundary graph (on the left).

An example of spin foam atom is illustrated in Fig. 1. With respect to the picture the set Va is made by the
bulk black vertex v together with all the nodes (v̄ in red and ṽ in blue) of the atom’s boundary graph belonging
to Vb. The set E contains the red edges connecting the five red nodes v̄ to the black vertex v. Thus the full
atom edge set Ea consists of the five red edges together with all the green half-links of the atom’s boundary
graph (which are elelments of Eb). With respect to the picture (Fig. 1) all the spin foam atom’s faces are cycles
made by four distinct vertices (vv̄ṽv̄0) and by the edges connecting them. For example one face is identified
by the black vertex, the two red nodes on the bottom and on the right, the blue node on the bottom right
corner and the half-edges joining them (note however that not all faces have been drawed in the picture).

Summarizing a spin foam atoms is the 2-skeleton of the dual polytope of a d-dimensional fundamental cell,
e.g. the dual 2-skeleton of a 4-simplex in the four-dimensional simplicial case. Moreover, as argued in [47], the
set A of atoms to be catalogued by the set B of bisected boundary graphs.

Definition 2.4 (Spin foam molecule). A spin foam molecule m 2 M is a triple of vertices, edges and faces
m =

�
Vm, Em,Fm) = (

S
a Va/� ,

S
a Ea/� ,

S
a Fa/�

�
constructed from a set of spin foam atoms quotiented by a set

of gluing maps enforcing the bonding relations between the atoms forming the molecule.

�

]�

Figure 2. The gluing of two atoms along a shared boundary patch to form a molecule.

Definition 2.5 (n-simplicial structures). The set of n-simplicial molecules MS consists of all molecules
obtained as gluings of a single (simplicial) atom aS labelled by the complete graph with n+ 1 vertices Kn+1.

Notice that we call simplicial, the above-defined spin foam molecules because each spin foam atom in itself
can be canonically understood as the dual 2-skeleton of an n-simplex1. However, this can be done only locally;
it has been proven that not every simplicial spin foam molecule can be associated uniquely to a well-defined
simplicial complex, as its dual 2-skeleton [50]. While the restriction to simplicial structures is motivated (in
addition to simplicity) by the greater geometric understanding of the corresponding models with respect to
those based on non-simplicial complexes, we stress that they remain a special case of a more general formalism.
The use of arbitrary cellular complexes is suggested by canonical LQG [48] and can also be accommodated in
the GFT formulation of spin foam models [47], using techniques from dually weighted tensor models.

1
In combinatorics an finite abstract k-simplicial complex C (e.g. an abstract k-simplex) is a collection of subsets � of a set of

vertices C0 = {v1, . . . , vn} such that the following two properties are satisfied:

1. For all � 2 C and �0 ⇢ � then �0 2 C.

2. If �, �0 2 C then � [ �0 2 C.
All subsets of cardinality p + 1 are called p-simplices �p 2 Cp. The dimension k of C is defined as the maximal cardinality of

simplices in C. From a topological point of view a k-simplex is the convex hull of a set of k+1 a�nely independent points in Rk
.
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Spin foam models: general structure

• the assignment of group-theoretic data can be seen as association of Hilbert spaces to spin foam structures, 
with the basic object being the Hilbert space associated to boundary patches, which induces a Hilbert space 
for the spin foam atom:

Definition 2.6 (Spin foam model). A spin foam model is a quantum theory prescribed by the assignment
of a quadruple (Hp,MS,W,A) and defined by a partition function of the following form:

ZSF =
X

m2MS

W (m)A(m) (2.3)

Here Hp is the Hilbert space associated to each boundary patch of the atoms forming the molecule, A(m) is the
spin foam amplitude assigned to m by each given model and W (m) is a further weight factor in the sum over
all molecules. While A can be motivated, purely by considering the discretization and quantization of some
continuum (gravitational) theory the prescription for W (m) should come from a di↵erent line of reasoning.
For example, the GFT approach to spin foam models provides a field-theoretic prescription for both of them.

The quantum states for which spin foam models define probability amplitudes are associated to the boundary
graphs of spin foam molecules. The primary ingredient is the patch Hilbert space, denoted by Hp ⌘ Hv̄. One
can then associate an Hilbert space to each spin foam atom Ha and to each spin foam molecule Hm.

Ha = ⌦p2@aHp Hm = ⌦p2@mHp (2.4)

One might also want to define a single Hilbert space for a spin foam model, that would accomadate any possible
choice of boundary. This is indeed a crucial issue to tackle the continuum limit and relate the formalism to
canonical quantum gravity. From this point of view the simplest proposal is that of a (bosonic) Fock space.
This is a natural choice from a QFT/emergent-gravity perspective that sees quantum spacetime as a peculiar
quantum many-body system. Another possibility is to define a Hilbert space as the direct sum of all possible
graph Hilbert spaces. A third alternative is the one inspired by the canonical LQG construction based on the
imposition of cylindrical equivalence relations. A comprehensive discussion of these issues can be found in [51].
Let us now turn instead to the construction of the spin foam amplitudes themselves.

In order to specify the spinfoam amplitudes Am we need a set of operators defining maps between the various
boundary patches’ Hilbert spaces. The basic ones are the vertex and glueing operators.
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The associated functions Va and Ke, called the vertex and glueing kernels, give, when applied to any basis
in the Hilbert spaces Hp, the generalised ”matrix elements” of the corresponding operators. The general
formula of the spin foam amplitude for a generic molecule, depending on its combinatorial structure, i.e. the
connectivity pattern between spin foam atoms and their subcells, is given by:
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The trace is evaluated over a complete basis in each of the shared patch Hilbert spaces (producing the convo-
lution of the corresponding functions). Following the gluing pattern e↵ected by the gluing maps, one identifies
a closed cycle and thus a spin foam face associated to the same patch (for internal patches). Thus the final
spin foam amplitude can also be written in terms of individual contributions associated to the faces, edges and
vertices of the spin foam molecule. Last these amplitudes, together with an additional combinatorial factor,
can be recovered as the perturbative Feynman amplitudes of a Group field theory whose propagator and the
interaction kernels are the same gluing and vertex kernels of the corresponding (dual) spin foam model [9, 47].
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formula of the spin foam amplitude for a generic molecule, depending on its combinatorial structure, i.e. the
connectivity pattern between spin foam atoms and their subcells, is given by:
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The trace is evaluated over a complete basis in each of the shared patch Hilbert spaces (producing the convo-
lution of the corresponding functions). Following the gluing pattern e↵ected by the gluing maps, one identifies
a closed cycle and thus a spin foam face associated to the same patch (for internal patches). Thus the final
spin foam amplitude can also be written in terms of individual contributions associated to the faces, edges and
vertices of the spin foam molecule. Last these amplitudes, together with an additional combinatorial factor,
can be recovered as the perturbative Feynman amplitudes of a Group field theory whose propagator and the
interaction kernels are the same gluing and vertex kernels of the corresponding (dual) spin foam model [9, 47].
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spin foam models arising from the Holst-Plebanski formulation of General Relativity in 4d [52]. From now on
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complexes can be found in the literature [1, 47, 48]. In this section, we emphatize and illustrate two points:
the construction ambiguities and the universal structure of the resulting amplitudes.
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note: the kernels are functions of all boundary data, identifying vectors in the boundary Hilbert spaces
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(spin foam 2-complex) is then defined as:

Definition 2.6 (Spin foam model). A spin foam model is a quantum theory prescribed by the assignment
of a quadruple (Hp,MS,W,A) and defined by a partition function of the following form:
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Here Hp is the Hilbert space associated to each boundary patch of the atoms forming the molecule, A(m) is the
spin foam amplitude assigned to m by each given model and W (m) is a further weight factor in the sum over
all molecules. While A can be motivated, purely by considering the discretization and quantization of some
continuum (gravitational) theory the prescription for W (m) should come from a di↵erent line of reasoning.
For example, the GFT approach to spin foam models provides a field-theoretic prescription for both of them.

The quantum states for which spin foam models define probability amplitudes are associated to the boundary
graphs of spin foam molecules. The primary ingredient is the patch Hilbert space, denoted by Hp ⌘ Hv̄. One
can then associate an Hilbert space to each spin foam atom Ha and to each spin foam molecule Hm.
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One might also want to define a single Hilbert space for a spin foam model, that would accomadate any possible
choice of boundary. This is indeed a crucial issue to tackle the continuum limit and relate the formalism to
canonical quantum gravity. From this point of view the simplest proposal is that of a (bosonic) Fock space.
This is a natural choice from a QFT/emergent-gravity perspective that sees quantum spacetime as a peculiar
quantum many-body system. Another possibility is to define a Hilbert space as the direct sum of all possible
graph Hilbert spaces. A third alternative is the one inspired by the canonical LQG construction based on the
imposition of cylindrical equivalence relations. A comprehensive discussion of these issues can be found in [51].
Let us now turn instead to the construction of the spin foam amplitudes themselves.

In order to specify the spinfoam amplitudes Am we need a set of operators defining maps between the various
boundary patches’ Hilbert spaces. The basic ones are the vertex and glueing operators.
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where the trace is defined over any complete basis in the Hilbert space of of each boundary patch
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Figure 1. A spin foam atom (on the right) and its bisected boundary graph (on the left).

An example of spin foam atom is illustrated in Fig. 1. With respect to the picture the set Va is made by the
bulk black vertex v together with all the nodes (v̄ in red and ṽ in blue) of the atom’s boundary graph belonging
to Vb. The set E contains the red edges connecting the five red nodes v̄ to the black vertex v. Thus the full
atom edge set Ea consists of the five red edges together with all the green half-links of the atom’s boundary
graph (which are elelments of Eb). With respect to the picture (Fig. 1) all the spin foam atom’s faces are cycles
made by four distinct vertices (vv̄ṽv̄0) and by the edges connecting them. For example one face is identified
by the black vertex, the two red nodes on the bottom and on the right, the blue node on the bottom right
corner and the half-edges joining them (note however that not all faces have been drawed in the picture).

Summarizing a spin foam atoms is the 2-skeleton of the dual polytope of a d-dimensional fundamental cell,
e.g. the dual 2-skeleton of a 4-simplex in the four-dimensional simplicial case. Moreover, as argued in [47], the
set A of atoms to be catalogued by the set B of bisected boundary graphs.

Definition 2.4 (Spin foam molecule). A spin foam molecule m 2 M is a triple of vertices, edges and faces
m =

�
Vm, Em,Fm) = (

S
a Va/� ,

S
a Ea/� ,

S
a Fa/�

�
constructed from a set of spin foam atoms quotiented by a set

of gluing maps enforcing the bonding relations between the atoms forming the molecule.

�

]�

Figure 2. The gluing of two atoms along a shared boundary patch to form a molecule.

Definition 2.5 (n-simplicial structures). The set of n-simplicial molecules MS consists of all molecules
obtained as gluings of a single (simplicial) atom aS labelled by the complete graph with n+ 1 vertices Kn+1.

Notice that we call simplicial, the above-defined spin foam molecules because each spin foam atom in itself
can be canonically understood as the dual 2-skeleton of an n-simplex1. However, this can be done only locally;
it has been proven that not every simplicial spin foam molecule can be associated uniquely to a well-defined
simplicial complex, as its dual 2-skeleton [50]. While the restriction to simplicial structures is motivated (in
addition to simplicity) by the greater geometric understanding of the corresponding models with respect to
those based on non-simplicial complexes, we stress that they remain a special case of a more general formalism.
The use of arbitrary cellular complexes is suggested by canonical LQG [48] and can also be accommodated in
the GFT formulation of spin foam models [47], using techniques from dually weighted tensor models.

1
In combinatorics an finite abstract k-simplicial complex C (e.g. an abstract k-simplex) is a collection of subsets � of a set of

vertices C0 = {v1, . . . , vn} such that the following two properties are satisfied:

1. For all � 2 C and �0 ⇢ � then �0 2 C.

2. If �, �0 2 C then � [ �0 2 C.
All subsets of cardinality p + 1 are called p-simplices �p 2 Cp. The dimension k of C is defined as the maximal cardinality of

simplices in C. From a topological point of view a k-simplex is the convex hull of a set of k+1 a�nely independent points in Rk
.
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Spin foam models: general structure

• the assignment of group-theoretic data can be seen as association of Hilbert spaces to spin foam structures, 
with the basic object being the Hilbert space associated to boundary patches, which induces a Hilbert space 
for the spin foam atom:

Definition 2.6 (Spin foam model). A spin foam model is a quantum theory prescribed by the assignment
of a quadruple (Hp,MS,W,A) and defined by a partition function of the following form:

ZSF =
X

m2MS

W (m)A(m) (2.3)

Here Hp is the Hilbert space associated to each boundary patch of the atoms forming the molecule, A(m) is the
spin foam amplitude assigned to m by each given model and W (m) is a further weight factor in the sum over
all molecules. While A can be motivated, purely by considering the discretization and quantization of some
continuum (gravitational) theory the prescription for W (m) should come from a di↵erent line of reasoning.
For example, the GFT approach to spin foam models provides a field-theoretic prescription for both of them.

The quantum states for which spin foam models define probability amplitudes are associated to the boundary
graphs of spin foam molecules. The primary ingredient is the patch Hilbert space, denoted by Hp ⌘ Hv̄. One
can then associate an Hilbert space to each spin foam atom Ha and to each spin foam molecule Hm.

Ha = ⌦p2@aHp Hm = ⌦p2@mHp (2.4)

One might also want to define a single Hilbert space for a spin foam model, that would accomadate any possible
choice of boundary. This is indeed a crucial issue to tackle the continuum limit and relate the formalism to
canonical quantum gravity. From this point of view the simplest proposal is that of a (bosonic) Fock space.
This is a natural choice from a QFT/emergent-gravity perspective that sees quantum spacetime as a peculiar
quantum many-body system. Another possibility is to define a Hilbert space as the direct sum of all possible
graph Hilbert spaces. A third alternative is the one inspired by the canonical LQG construction based on the
imposition of cylindrical equivalence relations. A comprehensive discussion of these issues can be found in [51].
Let us now turn instead to the construction of the spin foam amplitudes themselves.

In order to specify the spinfoam amplitudes Am we need a set of operators defining maps between the various
boundary patches’ Hilbert spaces. The basic ones are the vertex and glueing operators.
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Ke : Hp1 �! Hp2 Ke : Hp1 ⌦Hp2 �! C (2.6)

The associated functions Va and Ke, called the vertex and glueing kernels, give, when applied to any basis
in the Hilbert spaces Hp, the generalised ”matrix elements” of the corresponding operators. The general
formula of the spin foam amplitude for a generic molecule, depending on its combinatorial structure, i.e. the
connectivity pattern between spin foam atoms and their subcells, is given by:

A(m) = Trp2m
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The trace is evaluated over a complete basis in each of the shared patch Hilbert spaces (producing the convo-
lution of the corresponding functions). Following the gluing pattern e↵ected by the gluing maps, one identifies
a closed cycle and thus a spin foam face associated to the same patch (for internal patches). Thus the final
spin foam amplitude can also be written in terms of individual contributions associated to the faces, edges and
vertices of the spin foam molecule. Last these amplitudes, together with an additional combinatorial factor,
can be recovered as the perturbative Feynman amplitudes of a Group field theory whose propagator and the
interaction kernels are the same gluing and vertex kernels of the corresponding (dual) spin foam model [9, 47].

3 Spin foam models for constrained BF theory.

Having given the general definitions, let us now focus on the class of gravitational or geometrical Riemannian
spin foam models arising from the Holst-Plebanski formulation of General Relativity in 4d [52]. From now on
we restric ourselves to simplicial structures. Extensions to the Lorentzian context and to arbitrary cellular
complexes can be found in the literature [1, 47, 48]. In this section, we emphatize and illustrate two points:
the construction ambiguities and the universal structure of the resulting amplitudes.
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choice of boundary. This is indeed a crucial issue to tackle the continuum limit and relate the formalism to
canonical quantum gravity. From this point of view the simplest proposal is that of a (bosonic) Fock space.
This is a natural choice from a QFT/emergent-gravity perspective that sees quantum spacetime as a peculiar
quantum many-body system. Another possibility is to define a Hilbert space as the direct sum of all possible
graph Hilbert spaces. A third alternative is the one inspired by the canonical LQG construction based on the
imposition of cylindrical equivalence relations. A comprehensive discussion of these issues can be found in [51].
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The associated functions Va and Ke, called the vertex and glueing kernels, give, when applied to any basis
in the Hilbert spaces Hp, the generalised ”matrix elements” of the corresponding operators. The general
formula of the spin foam amplitude for a generic molecule, depending on its combinatorial structure, i.e. the
connectivity pattern between spin foam atoms and their subcells, is given by:
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The trace is evaluated over a complete basis in each of the shared patch Hilbert spaces (producing the convo-
lution of the corresponding functions). Following the gluing pattern e↵ected by the gluing maps, one identifies
a closed cycle and thus a spin foam face associated to the same patch (for internal patches). Thus the final
spin foam amplitude can also be written in terms of individual contributions associated to the faces, edges and
vertices of the spin foam molecule. Last these amplitudes, together with an additional combinatorial factor,
can be recovered as the perturbative Feynman amplitudes of a Group field theory whose propagator and the
interaction kernels are the same gluing and vertex kernels of the corresponding (dual) spin foam model [9, 47].
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note: these patch Hilbert spaces can be the starting point for the definition of a Hilbert space that 
accommodates any choice of boundary graphs. Doing so, one sets the way to study sums and /or 
refinements of spin foam complexes. There are several ways to do so, e.g. 1) take the direct sum 
over all possible boundary graphs; 2) construct from it a Fock space (leading to a group field 
theory formulation of spin foam models).
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Here Hp is the Hilbert space associated to each boundary patch of the atoms forming the molecule, A(m) is the
spin foam amplitude assigned to m by each given model and W (m) is a further weight factor in the sum over
all molecules. While A can be motivated, purely by considering the discretization and quantization of some
continuum (gravitational) theory the prescription for W (m) should come from a di↵erent line of reasoning.
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can then associate an Hilbert space to each spin foam atom Ha and to each spin foam molecule Hm.
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choice of boundary. This is indeed a crucial issue to tackle the continuum limit and relate the formalism to
canonical quantum gravity. From this point of view the simplest proposal is that of a (bosonic) Fock space.
This is a natural choice from a QFT/emergent-gravity perspective that sees quantum spacetime as a peculiar
quantum many-body system. Another possibility is to define a Hilbert space as the direct sum of all possible
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The associated functions Va and Ke, called the vertex and glueing kernels, give, when applied to any basis
in the Hilbert spaces Hp, the generalised ”matrix elements” of the corresponding operators. The general
formula of the spin foam amplitude for a generic molecule, depending on its combinatorial structure, i.e. the
connectivity pattern between spin foam atoms and their subcells, is given by:
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The trace is evaluated over a complete basis in each of the shared patch Hilbert spaces (producing the convo-
lution of the corresponding functions). Following the gluing pattern e↵ected by the gluing maps, one identifies
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note: the kernels are functions of all boundary data, identifying vectors in the boundary Hilbert spaces

• the amplitude associated to the whole spin foam molecule 
(spin foam 2-complex) is then defined as:

Definition 2.6 (Spin foam model). A spin foam model is a quantum theory prescribed by the assignment
of a quadruple (Hp,MS,W,A) and defined by a partition function of the following form:
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Here Hp is the Hilbert space associated to each boundary patch of the atoms forming the molecule, A(m) is the
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can then associate an Hilbert space to each spin foam atom Ha and to each spin foam molecule Hm.
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canonical quantum gravity. From this point of view the simplest proposal is that of a (bosonic) Fock space.
This is a natural choice from a QFT/emergent-gravity perspective that sees quantum spacetime as a peculiar
quantum many-body system. Another possibility is to define a Hilbert space as the direct sum of all possible
graph Hilbert spaces. A third alternative is the one inspired by the canonical LQG construction based on the
imposition of cylindrical equivalence relations. A comprehensive discussion of these issues can be found in [51].
Let us now turn instead to the construction of the spin foam amplitudes themselves.

In order to specify the spinfoam amplitudes Am we need a set of operators defining maps between the various
boundary patches’ Hilbert spaces. The basic ones are the vertex and glueing operators.

Va : ⌦
p2@a

Hp �! Ha Va : ⌦
p2@a

Hp �! C (2.5)

Ke : Hp1 �! Hp2 Ke : Hp1 ⌦Hp2 �! C (2.6)
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Figure 1. A spin foam atom (on the right) and its bisected boundary graph (on the left).

An example of spin foam atom is illustrated in Fig. 1. With respect to the picture the set Va is made by the
bulk black vertex v together with all the nodes (v̄ in red and ṽ in blue) of the atom’s boundary graph belonging
to Vb. The set E contains the red edges connecting the five red nodes v̄ to the black vertex v. Thus the full
atom edge set Ea consists of the five red edges together with all the green half-links of the atom’s boundary
graph (which are elelments of Eb). With respect to the picture (Fig. 1) all the spin foam atom’s faces are cycles
made by four distinct vertices (vv̄ṽv̄0) and by the edges connecting them. For example one face is identified
by the black vertex, the two red nodes on the bottom and on the right, the blue node on the bottom right
corner and the half-edges joining them (note however that not all faces have been drawed in the picture).

Summarizing a spin foam atoms is the 2-skeleton of the dual polytope of a d-dimensional fundamental cell,
e.g. the dual 2-skeleton of a 4-simplex in the four-dimensional simplicial case. Moreover, as argued in [47], the
set A of atoms to be catalogued by the set B of bisected boundary graphs.
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Figure 2. The gluing of two atoms along a shared boundary patch to form a molecule.

Definition 2.5 (n-simplicial structures). The set of n-simplicial molecules MS consists of all molecules
obtained as gluings of a single (simplicial) atom aS labelled by the complete graph with n+ 1 vertices Kn+1.

Notice that we call simplicial, the above-defined spin foam molecules because each spin foam atom in itself
can be canonically understood as the dual 2-skeleton of an n-simplex1. However, this can be done only locally;
it has been proven that not every simplicial spin foam molecule can be associated uniquely to a well-defined
simplicial complex, as its dual 2-skeleton [50]. While the restriction to simplicial structures is motivated (in
addition to simplicity) by the greater geometric understanding of the corresponding models with respect to
those based on non-simplicial complexes, we stress that they remain a special case of a more general formalism.
The use of arbitrary cellular complexes is suggested by canonical LQG [48] and can also be accommodated in
the GFT formulation of spin foam models [47], using techniques from dually weighted tensor models.

1
In combinatorics an finite abstract k-simplicial complex C (e.g. an abstract k-simplex) is a collection of subsets � of a set of

vertices C0 = {v1, . . . , vn} such that the following two properties are satisfied:
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All subsets of cardinality p + 1 are called p-simplices �p 2 Cp. The dimension k of C is defined as the maximal cardinality of

simplices in C. From a topological point of view a k-simplex is the convex hull of a set of k+1 a�nely independent points in Rk
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Quantum causal histories interpretation

proper causal structure at quantum level? is quantum evolution unitary?
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Hv

<latexit sha1_base64="u3K4YJBc9mCflU3aNGlmksJArlw=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XRTZcV7APaoWTSTBuaScYkUyhDv8ONC0Xc+jHu/Bsz7Sy09UDgcM693JMTxJxp47rfTmFtfWNzq7hd2tnd2z8oHx61tEwUoU0iuVSdAGvKmaBNwwynnVhRHAWctoPxfea3J1RpJsWjmcbUj/BQsJARbKzk9yJsRgTztD7rT/rlilt150CrxMtJBXI0+uWv3kCSJKLCEI617npubPwUK8MIp7NSL9E0xmSMh7RrqcAR1X46Dz1DZ1YZoFAq+4RBc/X3RoojradRYCezkHrZy8T/vG5iwls/ZSJODBVkcShMODISZQ2gAVOUGD61BBPFbFZERlhhYmxPJVuCt/zlVdK6qHrX1auHy0rtLq+jCCdwCufgwQ3UoA4NaAKBJ3iGV3hzJs6L8+58LEYLTr5zDH/gfP4AFGCSUQ==</latexit>

Hv

<latexit sha1_base64="u3K4YJBc9mCflU3aNGlmksJArlw=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XRTZcV7APaoWTSTBuaScYkUyhDv8ONC0Xc+jHu/Bsz7Sy09UDgcM693JMTxJxp47rfTmFtfWNzq7hd2tnd2z8oHx61tEwUoU0iuVSdAGvKmaBNwwynnVhRHAWctoPxfea3J1RpJsWjmcbUj/BQsJARbKzk9yJsRgTztD7rT/rlilt150CrxMtJBXI0+uWv3kCSJKLCEI617npubPwUK8MIp7NSL9E0xmSMh7RrqcAR1X46Dz1DZ1YZoFAq+4RBc/X3RoojradRYCezkHrZy8T/vG5iwls/ZSJODBVkcShMODISZQ2gAVOUGD61BBPFbFZERlhhYmxPJVuCt/zlVdK6qHrX1auHy0rtLq+jCCdwCufgwQ3UoA4NaAKBJ3iGV3hzJs6L8+58LEYLTr5zDH/gfP4AFGCSUQ==</latexit>

Hv
<latexit sha1_base64="u3K4YJBc9mCflU3aNGlmksJArlw=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XRTZcV7APaoWTSTBuaScYkUyhDv8ONC0Xc+jHu/Bsz7Sy09UDgcM693JMTxJxp47rfTmFtfWNzq7hd2tnd2z8oHx61tEwUoU0iuVSdAGvKmaBNwwynnVhRHAWctoPxfea3J1RpJsWjmcbUj/BQsJARbKzk9yJsRgTztD7rT/rlilt150CrxMtJBXI0+uWv3kCSJKLCEI617npubPwUK8MIp7NSL9E0xmSMh7RrqcAR1X46Dz1DZ1YZoFAq+4RBc/X3RoojradRYCezkHrZy8T/vG5iwls/ZSJODBVkcShMODISZQ2gAVOUGD61BBPFbFZERlhhYmxPJVuCt/zlVdK6qHrX1auHy0rtLq+jCCdwCufgwQ3UoA4NaAKBJ3iGV3hzJs6L8+58LEYLTr5zDH/gfP4AFGCSUQ==</latexit>

Hv

<latexit sha1_base64="u3K4YJBc9mCflU3aNGlmksJArlw=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XRTZcV7APaoWTSTBuaScYkUyhDv8ONC0Xc+jHu/Bsz7Sy09UDgcM693JMTxJxp47rfTmFtfWNzq7hd2tnd2z8oHx61tEwUoU0iuVSdAGvKmaBNwwynnVhRHAWctoPxfea3J1RpJsWjmcbUj/BQsJARbKzk9yJsRgTztD7rT/rlilt150CrxMtJBXI0+uWv3kCSJKLCEI617npubPwUK8MIp7NSL9E0xmSMh7RrqcAR1X46Dz1DZ1YZoFAq+4RBc/X3RoojradRYCezkHrZy8T/vG5iwls/ZSJODBVkcShMODISZQ2gAVOUGD61BBPFbFZERlhhYmxPJVuCt/zlVdK6qHrX1auHy0rtLq+jCCdwCufgwQ3UoA4NaAKBJ3iGV3hzJs6L8+58LEYLTr5zDH/gfP4AFGCSUQ==</latexit>

Hv
<latexit sha1_base64="l2BMtWWe0KniKI66MD19yHn0kcw=">AAAB9HicbVBNS8NAEN3Ur1q/qh69BIvgqSTi17HoxWMF+wFtKJvNpF262cTdSaWE/g4vHhTx6o/x5r9x2+agrQ8GHu/NMDPPTwTX6DjfVmFldW19o7hZ2tre2d0r7x80dZwqBg0Wi1i1fapBcAkN5CignSigkS+g5Q9vp35rBErzWD7gOAEvon3JQ84oGsnrPvEABhSz5qRHe+WKU3VmsJeJm5MKyVHvlb+6QczSCCQyQbXuuE6CXkYVciZgUuqmGhLKhrQPHUMljUB72ezoiX1ilMAOY2VKoj1Tf09kNNJ6HPmmM6I40IveVPzP66QYXnsZl0mKINl8UZgKG2N7moAdcAUMxdgQyhQ3t9psQBVlaHIqmRDcxZeXSfOs6l5WL+7PK7WbPI4iOSLH5JS45IrUyB2pkwZh5JE8k1fyZo2sF+vd+pi3Fqx85pD8gfX5Axx/klY=</latexit>

bVa• usual quantum causal history framework:  
each process is causal unitary evolution

for evolution operator between a-causal subsets (incl. elementary operators)

unitary F. Markopoulou, '99; E. Hawkins, F. Markopoulou, H. Sahlmann, '03



Quantum causal histories interpretation

proper causal structure at quantum level? is quantum evolution unitary?
<latexit sha1_base64="u3K4YJBc9mCflU3aNGlmksJArlw=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XRTZcV7APaoWTSTBuaScYkUyhDv8ONC0Xc+jHu/Bsz7Sy09UDgcM693JMTxJxp47rfTmFtfWNzq7hd2tnd2z8oHx61tEwUoU0iuVSdAGvKmaBNwwynnVhRHAWctoPxfea3J1RpJsWjmcbUj/BQsJARbKzk9yJsRgTztD7rT/rlilt150CrxMtJBXI0+uWv3kCSJKLCEI617npubPwUK8MIp7NSL9E0xmSMh7RrqcAR1X46Dz1DZ1YZoFAq+4RBc/X3RoojradRYCezkHrZy8T/vG5iwls/ZSJODBVkcShMODISZQ2gAVOUGD61BBPFbFZERlhhYmxPJVuCt/zlVdK6qHrX1auHy0rtLq+jCCdwCufgwQ3UoA4NaAKBJ3iGV3hzJs6L8+58LEYLTr5zDH/gfP4AFGCSUQ==</latexit>

Hv

<latexit sha1_base64="u3K4YJBc9mCflU3aNGlmksJArlw=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XRTZcV7APaoWTSTBuaScYkUyhDv8ONC0Xc+jHu/Bsz7Sy09UDgcM693JMTxJxp47rfTmFtfWNzq7hd2tnd2z8oHx61tEwUoU0iuVSdAGvKmaBNwwynnVhRHAWctoPxfea3J1RpJsWjmcbUj/BQsJARbKzk9yJsRgTztD7rT/rlilt150CrxMtJBXI0+uWv3kCSJKLCEI617npubPwUK8MIp7NSL9E0xmSMh7RrqcAR1X46Dz1DZ1YZoFAq+4RBc/X3RoojradRYCezkHrZy8T/vG5iwls/ZSJODBVkcShMODISZQ2gAVOUGD61BBPFbFZERlhhYmxPJVuCt/zlVdK6qHrX1auHy0rtLq+jCCdwCufgwQ3UoA4NaAKBJ3iGV3hzJs6L8+58LEYLTr5zDH/gfP4AFGCSUQ==</latexit>

Hv

<latexit sha1_base64="u3K4YJBc9mCflU3aNGlmksJArlw=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XRTZcV7APaoWTSTBuaScYkUyhDv8ONC0Xc+jHu/Bsz7Sy09UDgcM693JMTxJxp47rfTmFtfWNzq7hd2tnd2z8oHx61tEwUoU0iuVSdAGvKmaBNwwynnVhRHAWctoPxfea3J1RpJsWjmcbUj/BQsJARbKzk9yJsRgTztD7rT/rlilt150CrxMtJBXI0+uWv3kCSJKLCEI617npubPwUK8MIp7NSL9E0xmSMh7RrqcAR1X46Dz1DZ1YZoFAq+4RBc/X3RoojradRYCezkHrZy8T/vG5iwls/ZSJODBVkcShMODISZQ2gAVOUGD61BBPFbFZERlhhYmxPJVuCt/zlVdK6qHrX1auHy0rtLq+jCCdwCufgwQ3UoA4NaAKBJ3iGV3hzJs6L8+58LEYLTr5zDH/gfP4AFGCSUQ==</latexit>

Hv
<latexit sha1_base64="u3K4YJBc9mCflU3aNGlmksJArlw=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XRTZcV7APaoWTSTBuaScYkUyhDv8ONC0Xc+jHu/Bsz7Sy09UDgcM693JMTxJxp47rfTmFtfWNzq7hd2tnd2z8oHx61tEwUoU0iuVSdAGvKmaBNwwynnVhRHAWctoPxfea3J1RpJsWjmcbUj/BQsJARbKzk9yJsRgTztD7rT/rlilt150CrxMtJBXI0+uWv3kCSJKLCEI617npubPwUK8MIp7NSL9E0xmSMh7RrqcAR1X46Dz1DZ1YZoFAq+4RBc/X3RoojradRYCezkHrZy8T/vG5iwls/ZSJODBVkcShMODISZQ2gAVOUGD61BBPFbFZERlhhYmxPJVuCt/zlVdK6qHrX1auHy0rtLq+jCCdwCufgwQ3UoA4NaAKBJ3iGV3hzJs6L8+58LEYLTr5zDH/gfP4AFGCSUQ==</latexit>

Hv

<latexit sha1_base64="u3K4YJBc9mCflU3aNGlmksJArlw=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XRTZcV7APaoWTSTBuaScYkUyhDv8ONC0Xc+jHu/Bsz7Sy09UDgcM693JMTxJxp47rfTmFtfWNzq7hd2tnd2z8oHx61tEwUoU0iuVSdAGvKmaBNwwynnVhRHAWctoPxfea3J1RpJsWjmcbUj/BQsJARbKzk9yJsRgTztD7rT/rlilt150CrxMtJBXI0+uWv3kCSJKLCEI617npubPwUK8MIp7NSL9E0xmSMh7RrqcAR1X46Dz1DZ1YZoFAq+4RBc/X3RoojradRYCezkHrZy8T/vG5iwls/ZSJODBVkcShMODISZQ2gAVOUGD61BBPFbFZERlhhYmxPJVuCt/zlVdK6qHrX1auHy0rtLq+jCCdwCufgwQ3UoA4NaAKBJ3iGV3hzJs6L8+58LEYLTr5zDH/gfP4AFGCSUQ==</latexit>

Hv
<latexit sha1_base64="l2BMtWWe0KniKI66MD19yHn0kcw=">AAAB9HicbVBNS8NAEN3Ur1q/qh69BIvgqSTi17HoxWMF+wFtKJvNpF262cTdSaWE/g4vHhTx6o/x5r9x2+agrQ8GHu/NMDPPTwTX6DjfVmFldW19o7hZ2tre2d0r7x80dZwqBg0Wi1i1fapBcAkN5CignSigkS+g5Q9vp35rBErzWD7gOAEvon3JQ84oGsnrPvEABhSz5qRHe+WKU3VmsJeJm5MKyVHvlb+6QczSCCQyQbXuuE6CXkYVciZgUuqmGhLKhrQPHUMljUB72ezoiX1ilMAOY2VKoj1Tf09kNNJ6HPmmM6I40IveVPzP66QYXnsZl0mKINl8UZgKG2N7moAdcAUMxdgQyhQ3t9psQBVlaHIqmRDcxZeXSfOs6l5WL+7PK7WbPI4iOSLH5JS45IrUyB2pkwZh5JE8k1fyZo2sF+vd+pi3Fqx85pD8gfX5Axx/klY=</latexit>

bVa• usual quantum causal history framework:  
each process is causal unitary evolution

for evolution operator between a-causal subsets (incl. elementary operators)

unitary F. Markopoulou, '99; E. Hawkins, F. Markopoulou, H. Sahlmann, '03

• full quantum dynamics involves sum over processes thus a superposition of maps



Quantum causal histories interpretation

proper causal structure at quantum level? is quantum evolution unitary?
<latexit sha1_base64="u3K4YJBc9mCflU3aNGlmksJArlw=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XRTZcV7APaoWTSTBuaScYkUyhDv8ONC0Xc+jHu/Bsz7Sy09UDgcM693JMTxJxp47rfTmFtfWNzq7hd2tnd2z8oHx61tEwUoU0iuVSdAGvKmaBNwwynnVhRHAWctoPxfea3J1RpJsWjmcbUj/BQsJARbKzk9yJsRgTztD7rT/rlilt150CrxMtJBXI0+uWv3kCSJKLCEI617npubPwUK8MIp7NSL9E0xmSMh7RrqcAR1X46Dz1DZ1YZoFAq+4RBc/X3RoojradRYCezkHrZy8T/vG5iwls/ZSJODBVkcShMODISZQ2gAVOUGD61BBPFbFZERlhhYmxPJVuCt/zlVdK6qHrX1auHy0rtLq+jCCdwCufgwQ3UoA4NaAKBJ3iGV3hzJs6L8+58LEYLTr5zDH/gfP4AFGCSUQ==</latexit>

Hv

<latexit sha1_base64="u3K4YJBc9mCflU3aNGlmksJArlw=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XRTZcV7APaoWTSTBuaScYkUyhDv8ONC0Xc+jHu/Bsz7Sy09UDgcM693JMTxJxp47rfTmFtfWNzq7hd2tnd2z8oHx61tEwUoU0iuVSdAGvKmaBNwwynnVhRHAWctoPxfea3J1RpJsWjmcbUj/BQsJARbKzk9yJsRgTztD7rT/rlilt150CrxMtJBXI0+uWv3kCSJKLCEI617npubPwUK8MIp7NSL9E0xmSMh7RrqcAR1X46Dz1DZ1YZoFAq+4RBc/X3RoojradRYCezkHrZy8T/vG5iwls/ZSJODBVkcShMODISZQ2gAVOUGD61BBPFbFZERlhhYmxPJVuCt/zlVdK6qHrX1auHy0rtLq+jCCdwCufgwQ3UoA4NaAKBJ3iGV3hzJs6L8+58LEYLTr5zDH/gfP4AFGCSUQ==</latexit>

Hv

<latexit sha1_base64="u3K4YJBc9mCflU3aNGlmksJArlw=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XRTZcV7APaoWTSTBuaScYkUyhDv8ONC0Xc+jHu/Bsz7Sy09UDgcM693JMTxJxp47rfTmFtfWNzq7hd2tnd2z8oHx61tEwUoU0iuVSdAGvKmaBNwwynnVhRHAWctoPxfea3J1RpJsWjmcbUj/BQsJARbKzk9yJsRgTztD7rT/rlilt150CrxMtJBXI0+uWv3kCSJKLCEI617npubPwUK8MIp7NSL9E0xmSMh7RrqcAR1X46Dz1DZ1YZoFAq+4RBc/X3RoojradRYCezkHrZy8T/vG5iwls/ZSJODBVkcShMODISZQ2gAVOUGD61BBPFbFZERlhhYmxPJVuCt/zlVdK6qHrX1auHy0rtLq+jCCdwCufgwQ3UoA4NaAKBJ3iGV3hzJs6L8+58LEYLTr5zDH/gfP4AFGCSUQ==</latexit>

Hv
<latexit sha1_base64="u3K4YJBc9mCflU3aNGlmksJArlw=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XRTZcV7APaoWTSTBuaScYkUyhDv8ONC0Xc+jHu/Bsz7Sy09UDgcM693JMTxJxp47rfTmFtfWNzq7hd2tnd2z8oHx61tEwUoU0iuVSdAGvKmaBNwwynnVhRHAWctoPxfea3J1RpJsWjmcbUj/BQsJARbKzk9yJsRgTztD7rT/rlilt150CrxMtJBXI0+uWv3kCSJKLCEI617npubPwUK8MIp7NSL9E0xmSMh7RrqcAR1X46Dz1DZ1YZoFAq+4RBc/X3RoojradRYCezkHrZy8T/vG5iwls/ZSJODBVkcShMODISZQ2gAVOUGD61BBPFbFZERlhhYmxPJVuCt/zlVdK6qHrX1auHy0rtLq+jCCdwCufgwQ3UoA4NaAKBJ3iGV3hzJs6L8+58LEYLTr5zDH/gfP4AFGCSUQ==</latexit>

Hv

<latexit sha1_base64="u3K4YJBc9mCflU3aNGlmksJArlw=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XRTZcV7APaoWTSTBuaScYkUyhDv8ONC0Xc+jHu/Bsz7Sy09UDgcM693JMTxJxp47rfTmFtfWNzq7hd2tnd2z8oHx61tEwUoU0iuVSdAGvKmaBNwwynnVhRHAWctoPxfea3J1RpJsWjmcbUj/BQsJARbKzk9yJsRgTztD7rT/rlilt150CrxMtJBXI0+uWv3kCSJKLCEI617npubPwUK8MIp7NSL9E0xmSMh7RrqcAR1X46Dz1DZ1YZoFAq+4RBc/X3RoojradRYCezkHrZy8T/vG5iwls/ZSJODBVkcShMODISZQ2gAVOUGD61BBPFbFZERlhhYmxPJVuCt/zlVdK6qHrX1auHy0rtLq+jCCdwCufgwQ3UoA4NaAKBJ3iGV3hzJs6L8+58LEYLTr5zDH/gfP4AFGCSUQ==</latexit>

Hv
<latexit sha1_base64="l2BMtWWe0KniKI66MD19yHn0kcw=">AAAB9HicbVBNS8NAEN3Ur1q/qh69BIvgqSTi17HoxWMF+wFtKJvNpF262cTdSaWE/g4vHhTx6o/x5r9x2+agrQ8GHu/NMDPPTwTX6DjfVmFldW19o7hZ2tre2d0r7x80dZwqBg0Wi1i1fapBcAkN5CignSigkS+g5Q9vp35rBErzWD7gOAEvon3JQ84oGsnrPvEABhSz5qRHe+WKU3VmsJeJm5MKyVHvlb+6QczSCCQyQbXuuE6CXkYVciZgUuqmGhLKhrQPHUMljUB72ezoiX1ilMAOY2VKoj1Tf09kNNJ6HPmmM6I40IveVPzP66QYXnsZl0mKINl8UZgKG2N7moAdcAUMxdgQyhQ3t9psQBVlaHIqmRDcxZeXSfOs6l5WL+7PK7WbPI4iOSLH5JS45IrUyB2pkwZh5JE8k1fyZo2sF+vd+pi3Fqx85pD8gfX5Axx/klY=</latexit>

bVa• usual quantum causal history framework:  
each process is causal unitary evolution

for evolution operator between a-causal subsets (incl. elementary operators)

unitary F. Markopoulou, '99; E. Hawkins, F. Markopoulou, H. Sahlmann, '03

• full quantum dynamics involves sum over processes thus a superposition of maps

so could also require conditions for "causal unitary evolution" to apply only to full quantum dynamics

• micro reflexive --> full reflexive

• antisymmetry required also on full evolution

• micro transitivity ~ partial triangulation invariance --> too strong in QG

• transitivity for full evolution ~ composition of quantum probability amplitudes

• want to impose unitarity of full evolution ---> micro evolution must not be unitary
<latexit sha1_base64="6Pz+s+vc98zcUvLE4If4VTILdio=">AAAB+HicbVDLSgNBEOyNrxgfWfXoZTAInsKu+DoGvXjwEME8IFnC7GQ2GTI7s8zMKnHJl3jxoIhXP8Wbf+Mk2YNGCxqKqm66u8KEM20878spLC2vrK4V10sbm1vbZXdnt6llqghtEMmlaodYU84EbRhmOG0niuI45LQVjq6mfuueKs2kuDPjhAYxHggWMYKNlXpuuXsjxUCxwdBgpeRDz614VW8G9Jf4OalAjnrP/ez2JUljKgzhWOuO7yUmyLAyjHA6KXVTTRNMRnhAO5YKHFMdZLPDJ+jQKn0USWVLGDRTf05kONZ6HIe2M8ZmqBe9qfif10lNdBFkTCSpoYLMF0UpR0aiaQqozxQlho8twUQxeysiQ6wwMTarkg3BX3z5L2keV/2z6untSaV2mcdRhH04gCPw4RxqcA11aACBFJ7gBV6dR+fZeXPe560FJ5/Zg19wPr4BQ1iTgA==</latexit>

=)

E. Livine, DO, '02



<latexit sha1_base64="u3K4YJBc9mCflU3aNGlmksJArlw=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XRTZcV7APaoWTSTBuaScYkUyhDv8ONC0Xc+jHu/Bsz7Sy09UDgcM693JMTxJxp47rfTmFtfWNzq7hd2tnd2z8oHx61tEwUoU0iuVSdAGvKmaBNwwynnVhRHAWctoPxfea3J1RpJsWjmcbUj/BQsJARbKzk9yJsRgTztD7rT/rlilt150CrxMtJBXI0+uWv3kCSJKLCEI617npubPwUK8MIp7NSL9E0xmSMh7RrqcAR1X46Dz1DZ1YZoFAq+4RBc/X3RoojradRYCezkHrZy8T/vG5iwls/ZSJODBVkcShMODISZQ2gAVOUGD61BBPFbFZERlhhYmxPJVuCt/zlVdK6qHrX1auHy0rtLq+jCCdwCufgwQ3UoA4NaAKBJ3iGV3hzJs6L8+58LEYLTr5zDH/gfP4AFGCSUQ==</latexit>

Hv

<latexit sha1_base64="u3K4YJBc9mCflU3aNGlmksJArlw=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XRTZcV7APaoWTSTBuaScYkUyhDv8ONC0Xc+jHu/Bsz7Sy09UDgcM693JMTxJxp47rfTmFtfWNzq7hd2tnd2z8oHx61tEwUoU0iuVSdAGvKmaBNwwynnVhRHAWctoPxfea3J1RpJsWjmcbUj/BQsJARbKzk9yJsRgTztD7rT/rlilt150CrxMtJBXI0+uWv3kCSJKLCEI617npubPwUK8MIp7NSL9E0xmSMh7RrqcAR1X46Dz1DZ1YZoFAq+4RBc/X3RoojradRYCezkHrZy8T/vG5iwls/ZSJODBVkcShMODISZQ2gAVOUGD61BBPFbFZERlhhYmxPJVuCt/zlVdK6qHrX1auHy0rtLq+jCCdwCufgwQ3UoA4NaAKBJ3iGV3hzJs6L8+58LEYLTr5zDH/gfP4AFGCSUQ==</latexit>
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• proper causal dynamics requires: 
• dependence on orientation (ordering) 
• absence (or "irrelevance") of closed evolution (causal) loops 
• suitable conditions of evolution operators (to ensure unitarity)
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• proper causal dynamics requires: 
• dependence on orientation (ordering) 
• absence (or "irrelevance") of closed evolution (causal) loops 
• suitable conditions of evolution operators (to ensure unitarity)

Causal hiccups - closed timelike loops - harmless?

• directed graphs associated to QG dynamics contain, 
in general, causal loops (CTCs)

• possible strategies:

• define (modified) quantum dynamics that eliminates causal loops 
• define (modified) quantum dynamics that suppresses causal loops 
• define (modified) quantum dynamics that only allows harmless causal loops

• when is a causal loop harmless?

E. Livine, D. Terno, '06
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• only such "causally modified" spin foam amplitudes can be 
formulated as QCH and can define unitary quantum dynamics

• all most studied spin foam models are invariant under switch of orientation of simplicial structures

• they do not "register" the orientation of the complex associated to them

• can construct "properly causal" modifications of existing spin foam models

E. Livine, DO, '02 J. Engle, ’11, ’12; J. Engle, A. Zipfel, ‘15; 

E. Bianchi, P. Martin-Dussaud, '21
by truncating quantum geometric configurations 
summed over to single orientation

but procedure is rather ad hoc, so far

Causal indifference - inner product vs transition amplitudes in QG dynamics

• but orientation of (1-skeleton of) complex ~ order relations in underlying directed graph 
~ causal structure in QCH formulation of spin foam models 

none of the most studied spin foam models defines proper QCH and unitary QG quantum dynamics
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• proper causal dynamics requires: 
• dependence on orientation (ordering) 
• absence (or "irrelevance") of closed evolution (causal) loops 
• suitable conditions of evolution operators (to ensure unitarity)

Causal hiccups - closed timelike loops - harmless?

• directed graphs associated to QG dynamics contain, 
in general, causal loops (CTCs)

• possible strategies:

• define (modified) quantum dynamics that eliminates causal loops 
• define (modified) quantum dynamics that suppresses causal loops 
• define (modified) quantum dynamics that only allows harmless causal loops

• when is a causal loop harmless?

E. Livine, D. Terno, '06



Surprises from 

Quantum Gravity?



EFT and spacetime-based physics is powerful, and could even be fitting observations successfully

but it could also be very misleading, and reliance on it may hide new underlying principles/mechanisms

https://www.youtube.com/watch?v=n-43Uje-OuQ


EFT and spacetime-based physics is powerful, and could even be fitting observations successfully

but it could also be very misleading, and reliance on it may hide new underlying principles/mechanisms

an efficient mathematical framework + enough scalar fields with weird enough potentials can fit observations 
.... just like epicycles

https://www.youtube.com/watch?v=n-43Uje-OuQ


EFT and spacetime-based physics is powerful, and could even be fitting observations successfully

but it could also be very misleading, and reliance on it may hide new underlying principles/mechanisms

an efficient mathematical framework + enough scalar fields with weird enough potentials can fit observations 
.... just like epicycles

https://www.youtube.com/watch?v=n-43Uje-OuQ


EFT and spacetime-based physics is powerful, and could even be fitting observations successfully

but it could also be very misleading, and reliance on it may hide new underlying principles/mechanisms

emergent spacetime scenarios (more generally, QG formalisms) introduce new perspective and new tools

an efficient mathematical framework + enough scalar fields with weird enough potentials can fit observations 
.... just like epicycles

https://www.youtube.com/watch?v=n-43Uje-OuQ


QG and cosmology: possible consequences of emergent spacetime scenarios

• if spacetime is emergent, all main ingredient of EFT will eventually break down 

• therefore, EFT intuition should be taken with care, if not suspect 

• this applies also to phenomena at large distance scales, because the very idea that QG effects 
are confined at high energies/small distances, is based on EFT intuition and separation of scales 

• there may well be underlying QG mechanisms, not captured by EFT techniques nor intuition, 
that provide natural (if not universal) solutions to cosmological puzzles

an example could be dark energy and 
the cosmological constant problem

several emergent spacetime models offer interesting suggestions for concrete mechanisms
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• if spacetime is emergent, all main ingredient of EFT will eventually break down 

• therefore, EFT intuition should be taken with care, if not suspect 

• this applies also to phenomena at large distance scales, because the very idea that QG effects 
are confined at high energies/small distances, is based on EFT intuition and separation of scales 

• there may well be underlying QG mechanisms, not captured by EFT techniques nor intuition, 
that provide natural (if not universal) solutions to cosmological puzzles

an example could be dark energy and 
the cosmological constant problem

several emergent spacetime models offer interesting suggestions for concrete mechanisms



example: late time acceleration in Group Field Theory condensate cosmology

QG and cosmology: possible consequences of emergent spacetime scenarios

S. Gielen, DO, L. Sindoni, E. Wilson-Ewing, L. Marchetti, ....



example: late time acceleration in Group Field Theory condensate cosmology

• QFT of quantum simplices - Feynman diagrams = d>2 lattices - Feynman amplitudes = lattice gravity path integrals
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• for suitable "quantum geometric" models:

• consider fluid of quantum tetrahedra 
("universe as QG condensate") 

• mean field GFT condensate hydrodynamics ~ 
~ non-linear eqn for "wavefunction" on 
minisuperspace (space of homogenous geom) 

• obtain effective dynamics for universe volume 

Z
[dg0i] K̃(gi, g

0
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• semiclassical Friedmann eqn 
at large volumes/late times

• quantum bounce replacing 
big bang singularity
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example: late time acceleration in Group Field Theory condensate cosmology

• QFT of quantum simplices - Feynman diagrams = d>2 lattices - Feynman amplitudes = lattice gravity path integrals

S(',') =
1
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• for suitable "quantum geometric" models:

• consider fluid of quantum tetrahedra 
("universe as QG condensate") 

• mean field GFT condensate hydrodynamics ~ 
~ non-linear eqn for "wavefunction" on 
minisuperspace (space of homogenous geom) 

• obtain effective dynamics for universe volume 

Z
[dg0i] K̃(gi, g

0
i)�(g0i) + �

�Ṽ
�'(gi)

|'⌘� = 0

• semiclassical Friedmann eqn 
at large volumes/late times

• quantum bounce replacing 
big bang singularity

for "emergent matter" component (of QG origin)

equation of state w = p /⇢ . In appendix A we show that using relational time w can be

written as

w = 3�
2V V

00

(V 0)2
, (16)

where V is the total volume where the 0 indicates the derivative respect to relational time

�. As an illustration, we consider the single mode case, in which

w =
�3Q2 + 4E⇢

2 +m
2
⇢
4 +

�
1� 4

n

�
�⇢

n+2 +
�
1� 4

n0

�
µ⇢

n0+2

�Q2 + 2E⇢2 +m2⇢4 �
2
n�⇢

n+2 �
2
n0µ⇢

n0+2
. (17)

In the free case � = µ = 0, w is simply

w =
�3Q2 + 4E⇢

2 +m
2
⇢
4

�Q2 + 2E⇢2 +m2⇢4
.

At the bounce, the denominator vanishes, �Q
2 + 2E⇢

2 +m⇢
4 = 0, which gives the value of

⇢ at the bounce

⇢b =
1

m

qp
E2 +m2Q2 � E.

Put this back into w we see that the numerator is negative, therefore w ! �1 near the

bounce. This means that after the bounce the universe expanded with large acceleration, as

we expected. Yet we can show that this accelerating phase ends quickly, leaving only a small

number of e-folds [5]. The situation is still the same even if we consider the contributions

from all modes, as we can see in section III.

For large volume, ⇢ is large, and to the leading order w = 1 is a constant, corresponds

to the equation of state of a free massless scalar field, which we introduced as the relational

time. In fact, substituting w = 1 back into its definition (16), simple algebraic manipulation

shows that

V
00

V
�

✓
V

0

V

◆2

=
V V

00
� (V )2

V 2
=

d

d�

✓
V

0

V

◆
= 0,

hence V
0
/V = const which characterizes the FLRW equation using relational language in

the presence of a free massless field [22].

To the next order of ⇢, we can approximate w as

w = 1 +
2E

m2⇢2
. (18)

9

• effective cosmological dynamics
X. Pang, DO, '21, '25

• late times: as universe expands, interactions end up driving evolution
accelerated cosmological expansion
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FIG. 3. The behaviour of w in the two modes case, where both modes have only one interaction

term. Blue solid line shows the case where �11 < �21, while for red dashed line we have �11 =

�21. Black dotted lines show w = 1 and the phantom divide w = �1. Parameters are same as in

figure 1 with additional ones are �1 = �10�8
, µ1 = 0, µ2 = 0, n1 = n2 = 6 and �2 = �9.5⇥ 10�8

for �11 < �21, �2 = �9.5725⇥ 10�8 for �11 = �21.

One may then worry about whether this e↵ective phantom energy, like in many field

theoretic models, leads to a Big Rip singularity at later times also in our model. We will

discuss this issue in the next section, showing that the e↵ective energy density ⇢ , defined

from the equation of state w, remains bounded in our model, tending towards to a finite

value at asymptotically large volumes. To see this, we need some further approximation for

the equation of state w, which we anticipate here.

Since �11 < �21, and for large volume we have � ! �11, we see that ⇢2 is nearly a

constant given by ⇢2(�11). Using the solution (43), we get

⇢2(�11) =

 
1

2

r
��2

3

!� 1
2

1

(�21 � �11)
1
2

.

Furthermore, when � ! �11 the first mode ⇢1 would be much larger than ⇢2, hence in

computing the total volume we can ignore ⇢2 and let V = V1⇢21. Inserting this approximate

expression back in the expression for w, we get

w = �1�
b

V
, (47)

where b = 4V2⇢2(�11) is a constant. Notice again that b > 0, thus we have w < �1, and

the phantom divide w = �1 is being crossed.
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lesson for QG: 

cosmological constant/dark energy is to be understood from full QG theory, 

from collective behaviour of “quantum atoms of space”, in analogy with 
condensed matter systems and in a “geometrogenesis” scenario



Conclusions



Beyond spacetime?

Einstein (1936): “the introduction of  a space-time continuum may be considered as contrary to nature in view 
of  the molecular structure of  everything which happens on a small scale. [...] perhaps the success of  the 
Heisenberg method points to a purely algebraic method of  description of  nature, that is to the elimination of  
continuous functions from physics. Then, however, we must also give up, by principle, the space-time continuum. 
It is not unimaginable that human ingenuity will some day find methods which will make it possible to proceed 
along such a path. At the present time, however, such a program looks like an attempt to breathe in empty space.”

slowly, rather painfully (but still enthusiastically), 
we are learning to breathe in empty space....

… learn to think without space and time ….





Thank you for your attention!


